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Abstract 
To explore human deviations from Bayes’ rule in numerically 
explicit problems, prior and likelihood probabilities or 
frequencies are manipulated and their effects on posterior 
probabilities or surprisals are measured. Results show that 
people use both priors and likelihoods in Bayesian directions, 
but the effect of likelihood information is stronger than that of 
prior information. Use of frequency information and surprisal 
measures increase deviations from Bayesian predictions. 
There is evidence that people do compute something like the 
standardizing marginal data term when asked for probability 
estimates, but not when asked for surprisal ratings.  

Keywords: Reasoning under uncertainty; Bayes’ rule; 
rationality; base-rate neglect; probability; surprisal.  

Introduction 
A pressing issue in contemporary cognitive science is 
whether people exhibit rationality in their inferences and 
learning under uncertainty, with rationality defined in terms 
of conformity to Bayes’ rule. Evidence for Bayesian 
conformity comes from a wide variety of domains including 
sensorimotor control (Körding & Wolpert, 2006), vision 
(Yuille & Kersten, 2006), conditioning (Courville, Daw, & 
Touretzky, 2006), induction and inference (Tenenbaum, 
Griffiths, & Kemp, 2006), and language (Chater & 
Manning, 2006). In each of these areas, Bayesian models 
account for a wide range of inferential phenonmena.  

An unresolved problem is that these contemporary 
conclusions of Bayesian rationality appear to conflict with 
earlier Nobel-Prize-winning work showing that people are 
rather poor Bayesians, subject to such biases as base-rate 
neglect (Kahneman, Slovic, & Tversky, 1982; Kahneman & 
Tversky, 1996; Tversky & Kahneman, 1974, 1981).  

The purpose of this paper is to contribute to the resolution 
of this discrepancy between demonstrated Bayesian 
successes and failures. It may be tempting to explain this 
discrepancy by noting that the successes mainly involve 
performances in which the Bayesian ideal is only implicit, 
whereas the failures mainly involve more explicit reasoning 
with numerical problems. But why this implicit-explicit 
distinction would matter for Bayesian success would need to 
be explained for this argument to be successful.  

The present work focuses on factors that might be 
expected to improve Bayesian performance on problems 
that are typically described as explicit. These factors include 

the use of frequencies instead of probabilities to describe 
reasoning problems and the use of surprisals, the degree of 
being surprised, instead of probabilities to formulate 
responses.  

Bayesian Predictions 
Bayes’ rule specifies that the posterior probability of a 
hypothesis h given data d is equal to the prior probability of 
the hypothesis times the conditional likelihood of the data 
given the hypothesis divided by the marginal probability of 
the data, defined as the sum of prior by likelihood products 
over all hypotheses H: 
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One possibility is that people reason, not with 
probabilities and Bayes’ rule, but rather with surprisals. A 
surprisal is mathematically defined in information theory as 
the negative of the log to the base 2 of the probability of the 
event (Cover & Thomas, 1991):  

( ) ppS 2log−=  (2) 
More generally, the log in Equation 2 can be computed to 

any base and multiplied by a constant. Here, we simplify by 
considering the constant to be 1 and using the base 2, which 
is suitable for the binary decisions that we consider.  

The idea that people might reason with surprisals is based 
on the intuition that people do not often know probabilities 
and how to compute with them, but they do know whether 
and how much they are surprised by events. For example, 
estimate the probability that: 

1. Middle-eastern terrorists will destroy the NY trade 
towers, the White House, the US Capitol, and the Pentagon 
in the same hour. (Best before 9-11).  

2. A gunman will enter a one-room Amish school house 
and kill 7 little girls.  

3. A modern highway overpass will collapse early one 
weekend morning killing the occupants of a car passing 
underneath.  

Although such probabilities are difficult to compute or 
estimate, people do know that they are very surprised when 
such events happen. Perhaps surprisals would capture 
people’s intuitions about events more naturally than 
probabilities would.  
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Surprisals, defined as in Equation 2, can be interpreted as 
bits of information with a unit measure of one bit (for a 
binary event with probability .5). Bayes’ rule can then be 
rewritten in surprisal form as the prior surprisal of the 
hypothesis plus the likelihood surprisal of the data given the 
hypothesis minus the marginal surprisal of the data:  

( ) ( ) ( ) ( )dShdShSdhS −+= ||  (3) 
The marginal surprisal of the data is the surprisal of the 
probability computed in the denominator of Equation 1.  

Equation 3 simplifies Bayesian inference by replacing 
multiplication with addition, and division with subtraction. 
Because the marginal probability of the data given in the 
denominator of Equation 1, or its surprisal, is a complex 
computation and just a constant normalizing term, people 
might also simplify by omitting that part of the computation, 
whether reasoning in terms of probabilities or surprisals.  

Here, both of these hypotheses are tested – that people are 
better Bayesians when asked for surprisals rather than 
probabilities and that people simplify Bayesian inference by 
omitting computation of the marginal data. It is doubtful 
that ordinary people are conscious of such computations, 
but these hypotheses are tested here by examining the 
pattern of inferences across different problems.  

Bayesian predictions are illustrated in Figures 1-4 for 
scenarios in which high or low priors can be combined with 
high or low likelihoods to estimate posteriors, whether in 
the form of probabilities (Figures 1 and 2) or surprisals 
(Figures 3 and 4). High values for priors and likelihoods are 
here .85; low values are .15. To generate these predictions, 
probabilities are calculated with Equation 1, surprisals with 
Equations 2 and 3.  

Four different predicted patterns are evident in the 
prediction plots. Figure 1 shows that, when marginal data 
are considered, posterior probabilities are subject to 
equivalent main effects of priors and likelihoods; the higher 
these inputs of priors and likelihoods, the higher the 
posterior probability.  
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Figure 1: Predicted posterior probabilities, marginal data 

included. 
 
Figure 2, ignoring marginal data, shows two main effects 

and an interaction, such that the prior effect is stronger at 
higher likelihood.  

Figure 3 shows that predicted surprisal, with marginal 
data included, is a function of main effects of prior and 
likelihood, and an interaction between them. Surprisal 
decreases with both prior and likelihood, and the prior effect 
is stronger at lower likelihood.  

Figure 4 reveals that, ignoring marginal data, posterior 
surprisals are subject to just the two main effects of prior 
and likelihood. Again, posterior drops with both prior and 
likelihood.  
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Figure 2: Predicted posterior probabilities, marginal data 

excluded. 
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Figure 3: Predicted posterior surprisals, marginal data 

included. 
 

0

1

2

3

4

5

6

0.85 0.15
Prior

P
os

te
rio

r s
ur

pr
is

al

0.85
0.15

Likelihood

2 main effects only

 
Figure 4: Predicted posterior surprisals, marginal data 

excluded. 
 
Similarity of the human data to any of these four patterns, 

assessed by ANOVA, would indicate that inferences are 
close to Bayesian ideals, whether they are more or less so 
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with judgments of probability or surprisal, and whether the 
marginal data are used or ignored in these computations.  

The frequency hypothesis was tested also, by presenting 
problem information with either frequencies or 
probabilities. There is evidence that people perform 
somewhat better on explicit problems if the numerical 
information is presented in terms of frequencies, rather than 
probabilities (Chase, Hertwig, & Gigerenzer, 1998; 
Gigerenzer & Hoffrage, 1995; Gigerenzer & Todd, 1999).  

Method 

Participants 
Usable data came from 333 participants, recruited from four 
Canadian university social-networking sites and tested 
online: 170 females, 148 males, and 15 participants who did 
not specify their gender. Some other participants had their 
data excluded: 8 for doing numerical calculations, 31 for 
using Bayes’ rule, and 335 for not finishing the 
questionnaire.  

Materials 
The online experiment engine was Survey Monkey. There 
were four Bayesian problems, each framed in four different 
versions, depending on what information was given and 
what was asked: given probabilities and asked probabilities, 
given frequencies and asked probabilities, given 
probabilities and asked surprisals, given frequencies and 
asked surprisals. The four problems differed in content: cab 
problem, medical problem, pearl problem, and widget 
problem.  

A fully probabilistic version of Tversky and Kahneman’s 
(1982) cab problem read as follows: Two cab companies, 
Green and Blue, operate in the city. 85% of the cabs in the 
city are green and 15% are blue. An unknown cab may have 
been involved in an accident. A witness identified that cab 
as green. Testing by the court under the same circumstances 
existing on the night of the accident indicated that the 
witness correctly identified the color of cabs 85% of the 
time and failed 15% of the time. What is the probability 
(from 1-100) that the cab involved in the accident was green 
rather than blue? 

A version with given frequencies and asked surprisals 
went like this: Two cab companies, Green and Blue, operate 
in the city. 102 of the cabs in the city are green and 18 are 
Blue. An unknown cab may have been involved in an 
accident. A witness identified the cab as green. Testing by 
the court under the same circumstances existing on the 
night of the accident indicated that the witness correctly 
identified the color of cabs 28 times and failed 5 times. How 
surprised would you be (on a scale of 1-9, 1 being not at all 
surprised and 9 being extremely surprised) if the cab turned 
out to be green rather than blue? 

Unlike many previous studies, the potency of the prior 
and likelihood differences were nearly equated. High and 
low values, respectively, were 85 and 15, 84 and 16, 87 and 
13, or 86 and 14. This removed both confounds between 

probability size and type, and potential solution-carryover 
across problems. All materials, including all four condition 
variants of the three other content scenarios, are available 
from the authors on request.  

Design 
This was a mixed design with information format 
(probability vs. frequency) and question format (probability 
vs. surprisal) as between-subject factors, and prior and 
likelihood information (each high vs. low) as within-subject 
factors. A Latin Square ensured that each of the four 
between-subject groups saw each of the four within-subject 
conditions with a different content. Another Latin Square 
counterbalanced the order in which participants received the 
four problems, with each within-subject condition appearing 
equally in each of four positions. In anticipation of 
differential drop-out rates, there was an attempt to obtain 
approximately equal numbers of participants in each group 
by assigning the next participant to the group with the 
current lowest number of participants. The dependent 
variable was the posterior judgments of the participants.  

Procedure 
Once the participants clicked on the online ad, they were 
directed to the Survey Monkey website where they agreed to 
a consent form, which described the experiment (answering 
four inference problems testing rationality), how long it 
would take (5-10 minutes), and provided with a few 
constraints (no electronic calculators or pencils/paper to 
make calculations). Participants were encouraged to use 
their intuitive judgments when answering the problems.  

Each participant made a posterior judgment for every 
problem and then moved on to the next, without being given 
any feedback. Following completion of the four problems, 
there was a short list of questions to acquire information 
about the participants (age, gender, and math experience).  

Results 

Dropouts 
As shown in Figure 4, subject loss varied with between-
subject condition, X2(3) = 28, p < .001. Dropouts were more 
frequent when probabilities were requested (.61) than when 
surprisals were requested (.43), X2(1) = 23, p < .001. And 
dropouts were more frequent when frequencies were given 
(.57) than when probabilities were given (.50), X2(1) = 4.11, 
p < .05.  

Posteriors 
For each of the four between-subject conditions, posteriors 
were subjected to a repeated-measures ANOVA with priors 
and likelihoods as the two within-subject factors. Patterns of 
main and interactive effects can be compared to the 
prediction patterns of Figures 1-4. Means and SEs for the 
condition where probabilities were both given and asked for 
are shown in Figure 6. There were main effects for both 
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prior, F(1, 75) = 24, p < .001, and likelihood, F(1, 75) = 
120, p < .001, with no interaction, F(1, 75) = 2.78, p = .10, 
thus making a good fit to the marginal-data-included pattern 
shown in Figure 1. 
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Figure 5: Proportions of subject loss.  
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Figure 6: Mean posterior probabilities, with SEs, given 

probability input. 
 
Means and SEs for the condition where probabilities were 

given and surprisals were asked for are shown in Figure 7. 
Again, there were main effects for both prior, F(1, 75) = 11, 
p < .001, and likelihood, F(1, 75) = 85, p < .001, with no 
interaction, F(1, 75) = 2.68, p = .10, thus making a good fit 
to the marginal-data-excluded pattern shown in Figure 4.  

Means and SEs for the condition where frequencies were 
given and probabilities were asked for are shown in Figure 
8. Again, there were main effects for both prior, F(1, 68) = 
16, p < .001, and likelihood, F(1, 68) = 92, p < .001, with no 
interaction, F(1, 68) = 0.68, p = .41, thus making a good fit 
to the marginal-data-included pattern shown in Figure 1.  

Means and SEs for the condition where frequencies were 
given and surprisals were asked for are shown in Figure 9. 
In this case, there was only a main effect for likelihood, F(1, 
88) = 67, p < .001, with other Fs < 1, not fitting any of the 
four Bayesian predictions.  
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Figure 7: Mean posterior surprisals, with SEs, given 

probability input.  
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Figure 8: Mean posterior probabilities, with SEs, given 

frequency input. 
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Figure 9: Mean posterior surprisals, with SEs, given 

frequency input. 
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The proportion of variance accounted for by each 
significant main effect was computed for each of the three 
foregoing ANOVAs having two main effects. These partial 
eta squared values are presented in Figure 10, revealing that 
substantially more variance in posteriors was accounted for 
by variation in likelihoods than by variation in priors.  
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Figure 10: Proportion of variance accounted for by main 

effects in three conditions. 

Discussion 
The results show that people conform to Bayesian 
predictions by using both prior and likelihood information 
to update posteriors, with explicitly numerical problems. 
Somewhat surprisingly, people were closest to Bayes’ rule 
in the condition where they might be expected to do the 
worst; given probability information and asked to provide 
answers in probabilities. They were most deviant from 
Bayes’ rule in the condition where they might have been 
expected to do the best; given frequency information and 
asked to provide answers in surprisals. In that condition, 
they did use likelihood information appropriately, but they 
showed no evidence of using prior probabilities at all.  

Interestingly, giving frequency information did not help 
performance when probability inferences were required, but 
there was reliable evidence of appropriate use of both priors 
and likelihoods in that condition. The idea that frequency 
information does not help conformity to Bayes’ rule and 
sometimes actually interferes is perhaps explained by noting 
that frequencies must be converted into some type of 
probabilistic code before inferences can be done with them.  

Similarly, requesting surprisal responses did not help with 
probability information, but again there was evidence of 
appropriate use of both priors and likelihoods. All of this is 
consistent with the view that people can be Bayesian. A 
surprise for some is that this can happen even in numerically 
explicit problems, and that it happens most strongly with 
probabilistic inputs and responses.  

Participants’ relative neglect of prior probabilities was 
most evident in that the effect of prior information was 
considerably smaller than the effect of likelihood 
information, when both were used. In this respect, the data 
are also consistent with the view that people tend to ignore 
prior probabilities. This tendency for base rates (priors) to 
be used, but less so than likelihoods, has been noted in 
previous data (Bar-Hillel, 1983; Kahneman & Tversky, 
1996), but usually not quantified as precisely as here. Ratios 

of partial eta squared values (likelihood / prior) ranged from 
2.5 in the probability-given probability-asked condition, to 
3.0 in the frequency-given probability-asked condition, to 
4.5 in the probability-given surprisal-asked condition.  

The notion that priors are relatively neglected, even when 
problem information is conveyed via frequencies is 
consistent with results of previous studies (Gluck & Bower, 
1988; Kahneman & Tversky, 1996; Slovic, Fischhoff, & 
Lichtenstein, 1982; Tversky & Kahneman, 1973).  

Unlike laboratory studies, there were many dropouts from 
this online experiment and that may have contributed to 
Bayesian conformity in some way, perhaps by eliminating 
those participants who did not have good intuitions about 
how to solve probabilistic problems. The fact that the high 
dropout rate varied with condition could thus be viewed as a 
problem. However, the high dropout rate was also a blessing 
as it documented significantly higher dropout rates for 
responding with probabilities than with surprisals. This 
confirms the hypothesis that people are more comfortable 
with judging their own surprise than with estimating 
probabilities. However, even though people seem to prefer 
working with surprisals, surprisals do not aid conformity to 
Bayes’ rule. Indeed, the opportunity to answer with 
surprisals leads to greater neglect of both priors and 
likelihoods. Surprisals are, in this sense, the junk food of 
probabilistic inference – preferred but unhealthy.  

The fact that people were more likely to drop out when 
given frequency information than when given probability 
information is also interesting. Together with the finding 
that frequency information lessens conformity to Bayes’ 
rule, this dropout result is consistent with the idea that 
frequencies require additional processing (conversion to 
probabilities) in order to be useful in computation.  

Surprisals are not much used in psychological research, 
despite widespread psychological interest in manipulating 
and measuring surprise. Bayesian researchers often measure 
surprise at an event as 1 - p, where p is the probability 
estimate that the event will occur. Use of 1 - p did as well as 
surprisals, as long as the marginal data term was included in 
the predictions. Neither surprisals nor 1 - p captured human 
surprise judgments when the marginal data term was not 
included in the predictions. There is no evidence in the 
present study that surprisals or 1 - p offer any advantage 
over probabilities in terms of conformity to Bayes’ rule.  

As for whether people compute anything like the marginal 
data term, the present evidence is mixed. When participants 
were asked for probability estimates, they showed only 
main effects of priors and likelihoods, with no statistical 
interaction between them. This is a sign of using the 
marginal data term in some way. But when asked to use 
surprisals, given probability information, participants 
likewise showed only main effects of priors and likelihoods 
without interaction. This is a sign of ignoring the marginal 
data term. These findings are somewhat puzzling because 
using the marginal data involves relatively complicated 
division when producing probabilities, and relatively simple 
subtraction when producing surprisals. This may suggest 
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that inference under uncertainty is actually done with quite 
different mechanisms than Bayes’ rule.  

One simpler alternative for computing the posterior 
probability is to average prior and likelihood probabilities 
(McKenzie, 1994). Another is to weight and add the prior 
and likelihood probabilities (Juslin, Nilsson, & Winman, 
2009). For example, weighting the prior probability lower 
than the likelihood probability could simulate base-rate 
neglect. Although such weight-and-add models do not 
specify how various probabilities should be weighted, the 
present results suggest that something like a 1:3 ratio for 
priors and likelihoods, respectively, could simulate human 
results. Like surprisals, both averaging and adding weighted 
probabilities can avoid more complex multiplication and 
division operations. Neural networks are another possible 
contender for simulating human judgments because of their 
potential to learn appropriate weights in a brain-like fashion 
(Shultz, 2007).  

A Bayesian scheme to measure surprise as the log to the 
base 2 of the ratio of posterior to prior probabilities (Itti & 
Baldi, 2006) was also tried, but made a particularly bad fit 
to present data, whether or not the marginal data term was 
included in the predictions.  

Returning to the opening issue, there is evidence here for 
both Bayesian rationality and deviations from such 
rationality. Even with explicit judgments, people employ 
both prior and likelihood information in estimating 
posteriors. It is just that their use of priors is not as strong as 
their use of likelihoods. Base-rate neglect is virtually 
complete when people are presented with frequencies and 
asked for surprisals.   

Several of these results are, well, surprising. Obviously, 
there is plenty of scope for future research to illuminate this 
range of issues.  
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