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Abstract

We study the problem of category identification, which
involves making inferences about category membership
(e.g., a ‘cat’) given a set of features (e.g., has a tail, has
four legs). We note that this problem is closely related
to classification problems in machine learning, for which
standard methods exist, and new methods continue to be
developed. Using a large database of associations of fea-
tures to animal stimuli, made by different people, we test
several standard benchmark methods, including nearest
neighbor, decision tree, and logistic regression methods.
We also apply a new classifier, developed for image pro-
cessing, which we call Sparse Instance Representation.
We show that it is the best-performed, especially when
constrained in a novel psychologically interpretable way.
We conclude that our results argue for sparse exemplar-
based representations of category structures.

Keywords: category identification, sparse representation,
machine learning, category learning, exemplar represen-
tation

Category Identification

Suppose your friend tells you they are thinking of a par-
ticular animal, asks you what type it is, and starts listing
its features: it has a tail, has four legs, lives inside, and
so on. You are now facing a category identification prob-
lem, which requires you to infer the category of a given
instance of that category (Kemp, Chang, & Lombardi,
2010). In other words, when your friend describes the
features, you are being asked to identify a cat.

Category identification s clearly closely related to two
other cognitive capabilities. One of these is identifica-
tion, which is the problem of inferring which of a set
of instances is being presented, such as recognizing Jack
the cat among a group of individual cats. Identification
has been widely studied in various subfields of the cog-
nitive sciences, including psychology (Nosofsky, 1986),
machine learning and statistics (Bunge & Fitzpatrick,
1993), and linguistics and philosophy (Michie, Spiegel-
halter, & Taylor, 1994). The other related cognitive abil-
ity is categorization, which is problem of inferring the
category membership of presented stimuli, such as de-
ciding whether something is a cat or a dog. This has also
been widely studied, especially in cognitive psychology
(e.g., Nosofsky, 1986; Kruschke, 1992; Love, Medin, &
Gureckis, 2004)
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The difference between identification and category
identification is that the former is about instances, and
not their categorical structure. The difference between
category identification and categorization is much more
subtle. The key issue, as described by Kemp et al. (2010,
p- 230) relates to the sorts of features used to present the
stimulus. In categorization, features are presented at the
level of instances (e.g., Jack the cat has a tail). In cate-
gory identification, features are presented at the level of
categories (e.g., has a tail). Intuitively, categorization is
about deciding whether a stimulus belongs to a family,
whereas category identification is about which family of
stimuli as a whole is being described.

It is clear that category identification is an important
capability, because it allows us to think about stimuli de-
scribed by features in terms of their category member-
ship. Nestled between identification and categorization,
category identification blends psychologically interest-
ing aspects of both. It maintains the focus on differences
and individual instances inherent in identification, while
incorporating the focus on sameness and coherence of
conceptual structure inherent in categorization. In partic-
ular, category identification offers an interesting window
onto the structure of mental representations, since it in-
volves the relationship between categories and features,
and so requires the representation of both what makes
stimuli different, and what makes them the same.

In this paper, we use existing data relating stimuli to
features that can be interpreted in terms of category iden-
tification. We explore a number of models of these data
based on classification approaches from machine learn-
ing. We consider a benchmark set of standard classifiers,
as well as a new method developed in the image pro-
cessing literature, which we call Sparse Instance Repre-
sentation, that makes interesting, and psychologically in-
terpretable, representational assumptions. We show that
one variant of Sparse Instance Representation is the best-
performed model of the data, and, based on the results,
we draw some conclusions about the way people may
represent categories.

Data

Our data come from the Leuven Natural Concept
Database (DeDeyne et al., 2008). As summarized by
Storms, Navarro, and Lee (2010), this database involves
more than 400 stimulus words, distributed over 16 se-
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Pl P2 P3 P4
is mammal 1 1 1 1
can fly O o0 0 O
is small 1 1 1 1
has small ears 0 O 1 0
has pointy ears 0 1 1 1
has large eyes 0o o0 O 1
has round eyes 1 1 0 0
is hairy 1 1 0 1
is friendly 0 0 1 1
live alone 0 1 1 0

Table 1: Examples of feature applicability judgments.

mantic categories: two food categories (fruits and veg-
etables), two activity categories (professions and sports),
six animal categories (amphibians, birds, fish, insects,
mammals, and reptiles), and six artifact categories (mu-
sical instruments, tools, vehicles, clothing, kitchen uten-
sils, and weapons). For every stimulus word, the
database contains data for a large number of variables,
including typicality ratings, goodness ratings, goodness
rank order, exemplar generation frequencies, exemplar
associative strength, category associative strength, es-
timated age of acquisition, word frequency, familiarity
ratings, imageability ratings, and pairwise similarity rat-
ings.

Exemplar by Feature Data

In addition, the database incorporates a large feature gen-
eration study, in which 1003 student participants (about
half participating for course credit, and half paid the
equivalent of $10 per hour) wrote down around 10 fea-
tures for 6-10 stimuli. Features were generated for each
of the stimulus words by at least 20 participants. Af-
ter tallying generation frequencies, all features that were
generated at least four times were selected. These fea-
tures were rated for their importance in defining the dif-
ferent categories to which the corresponding stimulus
words belonged.

Most importantly for our modeling, the stimuli and
features were combined in a feature verification task, in
which four participants (two students, two adults with
university degrees, paid the equivalent of $10 per hour,
and not including any of the authors of this paper) judged
whether or not each of the features belonged to each of
the stimuli. This resulted in two large exemplar by fea-
ture applicability matrices for each participant, one for
the animal domain, with 129 animal stimulus words and
765 animal features, and the other for the artifact do-
main, with 166 artifact stimulus words and 1295 artifact
features. The subset of the database we use involve the
four exemplar by feature matrices for the animal domain.
Originally, DeDeyne et al. (2008) categorized the animal
into six families (mammals, birds, fish, insects, reptiles,
amphibians), but also pointed out that people found it

0.18

I Participant 1 i
Participant 2

G

Mammal Bird Fish Insect Reptile

Figure 1: Feature-judgment discrepancy for each partic-
ipants, on each animal, grouped by animal family.

difficult to distinguish reptiles and amphibians. We com-
bined the amphibian family and the reptile family, so that
we had 30 animals from the mammal family, 30 for birds,
23 for fish, 26 for insects and 20 for amphibians and rep-
tiles.

Interpretation as Category Identification Data

In this paper, we treat the exemplar by feature judgments
of each of the four participants as providing data relevant
to category identification. This is certainly not the only
way these data could be interpreted, but we think it is a
reasonable interpretation. The participant is being asked
to decide whether or not each of a large list of features
applies to a word describing a category. Thus, we can use
the set of features a participant assigned to a word—*“can
fly”, “is small”, and so on—as the input to a category
identification problem, where the task is to identify the
category associated with that list of features.

A challenge for the four participants in doing this task
is that many of the category-level features in the Leu-
ven set do not have clear answers. This intuition is made
more concrete by the example in Table 1, which shows
the feature judgments for the stimulus word “cat” made
by all four participants for some selected features. The
first two features—‘“can fly” and “is small”—are good
examples of the features where participants give unani-
mous assessments. Cats as a category cannot fly, and are
small.

But the remaining features in Table 1 focus on the fea-
tures where there are reasonable differences in the as-
sessments of the participants. Whether a cat “is short
haired”, “is friendly”, “lives alone”, and so on, is less
clear. The differences in individual assessments high-
lighted in Table 1 are evident throughout the data. Fig-
ure 1 shows, for each participant and each animal, the
proportion of features for which that participant was dif-
ferent from all others. It is clear that these differences
occur for all animals and all participants.

Machine Learning Classifiers

The psychological problem of category identification
bears a close formal relationship with supervised classi-
fication methods developed in machine learning. In gen-
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eral, supervised classifiers are algorithmic procedures for
assigning a new case into one of a set of pre-defined
classes, on the basis of observed attributes (Duda, Hart,
& Stork, 2000). Typically, the input to a classifier is a
vector of features, and the output is the indicator of the
assigned class, or the probability of assignment to each
class.

Thus, it is straightforward to map classifiers to the psy-
chological task of category identification. The problem
is one of taking a set of features—has a tail, has four
legs, lives inside, and so on—and mapping them to a cat-
egory like ‘cat’. This is exactly the psychological prob-
lem of category identification. It is also straightforward
to use the Leuven dataset to evaluate different classifiers
with a standard machine learning methodology. Specif-
ically, we split the exemplar by feature matrices for the
four participants into training and test sets in a four-fold,
leave-one-out, cross-validation. This means, in each val-
idation, we train the classifier using data from three par-
ticipants, so that it can learn which features are associ-
ated with each animal, and then test on the data from the
participant left out, so that it has to classify a presented
set of features as one of the animals.

We believe this link of theory and methods could con-
stitute one useful starting point for understanding how
people do category induction. It provides set of sophis-
ticated methods for doing the task, and a natural way
of evaluating them as benchmarks. It is also possible
to identify psychological assumptions implicit in many
of these methods—such as the nature of the representa-
tional assumptions they make—to help guide psycholog-
ical theorizing and model building.

We used versions of three standard machine learning
methods—nearest neighbor, decision trees, and multino-
mial regression—which we describe only briefly, since
they are well documented in the literature (e.g., Bishop,
2006).

Benchmark Methods

1-nearest-neighbor (INN) 1-nearest-neighbor (1NN)
assigns the test sample to the same class as its closest
training sample in the feature space. We implemented
two versions of 1NN. In the first version, we combined
the three training matrices to be one with dimension of
764 features by 387 animal instances, with 3 instances
for each animal that come from different training matri-
ces. In the second version, we found the nearest neighbor
of the test sample in each of the training matrices sepa-
rately, and took the majority vote for classification. In
both versions, distance between two feature vectors are
calculated using the /1 norm.

Decision tree (DT) Decision tree methods classify the
test sample based on a learned tree-structure model.
Each interior node corresponds to one of the features,
branching to different paths based on the value of the cur-
rent feature. Each leaf represents a decision class given
the values of the input features represented by the corre-
sponding path. The algorithm works top-down by choos-

ing a feature at each step, trying to split the data into sub-
sets that belong to the same class. Different criteria for
splitting are available, and we used information gain in
our implementation (Bishop, 2006).

Sparse multinomial logistic regression (SMLR)
Multinomial logistic regression is a multi-class general-
ization of standard binary logistic regression. It gener-
ates the logistic distribution of multiple classes using a
linear combination of per-class weights on each of the
dimensions of the input. We employed a multinomial
logistic regression method that enforces sparsity using
a [ regularization (Krishnapuram, Figueiredo, Carin, &
Hartemink, 2005), and the implementation was done us-
ing the Princeton Multi-Voxel Pattern Analysis Toolbox
(MVPA)'. The output is a set of probabilities of mem-
bership of 129 classes. The test sample is then assigned
to the class with the highest probability.

Sparse Instance Representation

In machine learning, sparse representation has proven
to be a powerful tool for representing high-dimensional
input with high fidelity (Bruckstein, Donoho, & Elad,
2009). Some methods, such as SMLR discussed above,
implement sparsity by selecting only a small subset of
features for classification. Other methods select a small
number of observations, rather than features. In Sup-
port Vector Machine (Vapnik, 1995), for example, only a
small subset of relevant training samples are selected to
characterize the decision boundary between classes.

A new and interesting machine learning method, de-
veloped in the image classification literature, uses the
second approach (Wright, Yang, Ganesh, Shankar Sastry,
& Ma, 2009). We call this new method Sparse Instance
Representation (SIR), because it represents test samples
in terms of a small number of the training samples them-
selves. Specifically, the test samples are represented as
a linear combination of just a few training samples from
the same class. This representation is naturally sparse,
involving only a small fraction of the overall input. In-
stead of using sparsity to identify a relevant model or rel-
evant features that can later be used for classifying all test
samples, it uses the sparse representation of each individ-
ual test sample directly for classification. In this sense,
it can be considered a generalization of nearest neighbor
approaches. While SIR has been successful in the image
applications for which it was developed, we believe ours
is the first attempt to apply it to a cognitive problem.

Mathematical framework Mathematically, in a typ-
ical SIR formulation, a dictionary D is constructed as
D =[dy,dy,...,d;], where each d; € R™ is a feature vec-
tor of the ith instance. D is an over-complete dictionary if
the number of instances n is much larger than the dimen-
sion of the feature vector m. To reconstruct an instance
in terms of its feature vector y, SIR uses the equation
y = D0, where a regularization is enforced on 0, such that
only a small number of instances from the dictionary D

! Available from http://www.pni.princeton.edu/mvpa
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are selected to describe y. A test sample is assigned to the
class with the smallest residual in presenting y as a linear
combination using all instances from the corresponding
class.

For our data, the dictionary D is a m X n matrix with 0-
1 entries, where m = 764 is the total number of features
and n = n, X n, is the total number of instances from all
training matrices, where n, = 129 is the number of in-
stances for an individual training matrix, and n, = 3 is
the number of training matrices. Thus, each class (cate-
gory) has n,, instances, in the form of three feature vec-
tors (columns) in D. A test sample is in the form of a
feature vector y of the size m x 1.

By re-aligning the dictionary matrix D, columns are
grouped by animal. Thus D can be rewritten as D =
[D1,Ds,...,Dy,], where each Dy, k = 1,2, ...,n,, has di-
mension m X n,. For a given test sample with feature
vector y, SIR assumes that y can be expressed by a linear
combination of columns in subset Dy, that is of the same

class as y.
I‘lp

y=Y 6;Dj, (1)
i=1

where D;'(O is the ith column of Dy,,. Since the class mem-

bership of y is yet unknown, it is necessary to consider
global linear combination of all the columns in D, thus

n, "p

y=D0=Y Y 6,D;. (2)
k=1i=1

However, only those instances from the same class (e.g.
ko) of y are highly relevant, whereas the features of other
instances are much less relevant. In theory, only 7, fea-
ture vectors of training samples that belong to ky con-
tribute to the expression of y, which means globally the
linear expression weights in 6 are sparse.

The convex objective function is

0" = aurgmeinHGH1 , y=D6.

where ||0]; denotes the /; norm of 6. However, based
on the data, m > n for the dimension of matrix D. This
means the dictionary D is non-overcomplete, because the
equation y = D6 is overdetermined, where the number
of equations is larger than the number of unknown vari-
ables. In this case, the equation usually does not hold.
Instead, we place it in the objective function by incor-
porating a trade-off parameter u, where u can be tuned
for speed of convergence, we fixed u value in this study.
Thus the objective becomes,

0 :argrrgnil\y—DeHiJruH@Hl- )

Decision criterion After obtaining the sparse solution
0*, we calculate the residuals

() =y —Dibill3, k=1,2,....n,, 4)

Table 2: Cross-validation results.

Accuracy
Method Test1 Test2 Test3 Testd Ave
INN V1 .605 .674 .605 612 .624
INN V2 .628 .682 .643 .674  .657
DT .388 .558 .543 426 480
SMLR .612 - 775 411 .599
SIR .659 729 744 605 .684

NonNeg SIR  .760 760 783 659 740

where 0y has size n, x 1. Its elements are n;, linear
weights of the n;, instances of the kth animal, features
of one instance thus receive the same weight. Finally,
the test sample is identified by

Index(y) = arg rnkin r(y) )

Non-Negative Variant A novel and psychologically
interpretable variant of SIR places a non-negative con-
straint on the linear expression weights in 6. Therefore,
the /; regularized unconstrained convex optimization in
Equation 3 becomes a non-negative penalized /; regular-
ized unconstrained convex optimization:

6" = argmin [y —DO|3+u|]l;, 6>0. (6)

The natural psychological interpretation is that this con-
straint forces representations that include only instances
that provide evidence for a category identification deci-
sion.

Results

We used the Split Bregman method (Goldstein & Osher,
2009) to solve the optimization task, both without and
with non-negative restriction.> We describe overall per-
formance of the classifiers, then focus on the details of
the SIR classifier.

Accuracy

We measured the performance of each method using ac-
curacy, which is simply the proportion of correctly clas-
sified animals. Table 2 details the accuracies for all of
the classifiers on each of the four cross-validations, as
well as average accuracy.’ It is clear that SIR outper-
formed the other benchmark methods, especially with
the inclusion of the non-negativity constraint. Nearest
neighbor classifiers were the next best performed, fol-
lowed by sparse multinomial logistic regression, and de-
cision trees.

We think the variation in accuracy across the cross-
validations may be interpretable in terms of individual

2A technical note regarding details of implementation is
available at http://www.socsci.uci.edu/~szhang/research.htm

3Note that SMLR did not converge on Test 2.
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Figure 2: Weights on all instances in the training data learned for ‘tiger’, using (upper panel) no regularization, (middle
panel) sparse regularization, and (lower panel) non-negative sparse regularization, colored by participant.

differences in representation. Classification accuracy
was almost always lowest when the feature assignments
of participant 4 were used for testing. Referring back to
the individual differences in agreement in Figure 1, we
note that participant 4 shows more discrepancy in their
representations of animals.

Selected Instances

Figure 2 gives an example of the instance-based repre-
sentations used by SIR, for the example ‘tiger’. Each
panel shows the weights for all of the animals for the
three training participants concatenated together. The top
panel shows the case when no regularization is used. The
middle panel shows the case when sparse regularization
is used. The bottom panel shows the case when the non-
negativity constraint is placed on sparse regularization.

To give some intuitions about the instances selected
by the regularization processes, the middle panel labels
a number of animals besides tiger that receive significant
positive or negative weights. For example, the third par-
ticipant, to the right, uses both ‘fox’ and ‘cod’ as well as
‘tiger’ in their representation, with fox features contribut-
ing positive evidence and cod features negative evidence.
In the non-negative regularization, only fox continues to
contribute. The other participants use other animals to
represent tiger, again showing individual differences, but
use animals that are easily interpreted in terms of the ev-
idence their features provide for identification.

Another analysis is presented in Figure 3, which
shows the weight distribution across all pairs of a test
category (vertical axis) and any potential category (hori-

zontal axis). For each test category and a potential cate-
gory, we summed the estimated weights of all 3 instances
of the potential category, resulting in a weight-sum asso-
ciated with the specific pair. For each pair, values across
tests are further summed to yield the value shown.

Clearly, the sparse weights are generally assigned to
instances from the correct category, illustrated by over-
all larger values along the diagonal, whereas instances
from wrong categories received much lower weights, il-
lustrated by the shaded areas off the diagonal. Another
interesting pattern is shown by the five squares along the
diagonal, each containing all pairs within an animal fam-
ily (mammal, bird, fish, insect and reptile). This illus-
trates the within-category similarity in weighting that re-
flects the natural conceptual structure.

Discussion

The critical representational assumption of SIR is that
sparsity in enforced in terms of instances. All features
from the same instance receive the same weight, but dif-
ferent instances receive different weights. The insight
is that, although features are naturally very high dimen-
sional, instances belonging to the same class lie approxi-
mately in low-dimensional feature subspaces. If a collec-
tion of representative samples can be found, it is possible
to represent a typical sample with respect to the basis
they form.

The decision-making assumptions of SIR are simple,
and assume a linear combination of the basis instances in
doing category identification. One potentially important
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Figure 3: Overall weight distribution for SIR.

contribution we have made is to identify a non-negativity
constraint on the weights as leading to better SIR perfor-
mance on category identification data. This focus on in-
stances that are evidence for a category mirrors findings
in the similarity modeling literature that emphasize the
role of positively weighted common features in stimulus
representation (e.g., Navarro & Lee, 2004).

Thus, the superior performance of SIR in our evalu-
ations support the idea that people represent stimuli in
terms of sparse sets of the relevant instances. This is
a natural extension of prominent and successful exem-
plar theories of concept representation (Nosofsky, 1986).
It assumes that specific stimuli are the basis of concept
representation, but implies that relatively few key stim-
uli are used. This is what is done—by various specific
mechanisms—by a number of existing models of cate-
gory learning, including the original ALCOVE model
(Kruschke, 1992), SUSTAIN (Love et al., 2004), and
the Varying Abstraction Model (Vanpaemel & Storms,
2008). Useful next steps are to apply these sorts of psy-
chological models to account for the category identifi-
cation behavior, and to explore their formal relationship
to machine learning methods like SIR, and related case-
based reasoning systems (e.g., Aamodt & Plaza, 1994).
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