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Abstract

Recent studies in category learning have shown that there are
shifts in category representation. In the present study, we de-
velop three models categorization that consisted of different
learning objectives to examine cognitive mechanism underly-
ing the representational shifts. The results of simulation indi-
cated that the representational shift observed in Johansen &
Palmeri (2002) can be explained by selective attention, se-
lective exemplar memorization, or mere random chance. Al-
though these models could not be differentiated based on clas-
sification generalization patterns, a detail examination of ac-
quired model coefficients were conducted in order to design
future studies.

Introduction

Recent studies in category learning and usage have shown
that there are shifts in category representation. For exam-
ple, Johansen and Palmeri (2002) showed that participants’
category generalization patterns in early learning stages were
more consistent with rule-like representations, but as learn-
ing progressed they exhibited generalization pattern that were
more consistent with an exemplar-based representation. Jo-
hansen and Palmeri (2002) hypothesized that the selective at-
tention process was the key cognitive mechanism that pro-
duced the representational shifts. They developed and suc-
cessfully tested a model that initially paid attention to a single
feature dimension and then gradually distributed its attention
to achieve accurate classification. In contrast, Bourne and his
colleague (Bourne, Healy, Kole & Graham, 2006; Bourne,
Healy, Parker & Richard, 1999) suggested that representa-
tional shifts can occur both rule-to-exemplar and exemplar-
to-rule fashion, depending on cognitive demands of tasks be-
ing performed. In particular, Bourne et al. (1999, 2006)
claimed that memorabilities of strategies plays an important
role in representational or strategy shifts.

In the present study, we developed three models of cate-
gorization that differed in their learning objectives. The first
model was built on the basis of Johansen and Palmeri’s (2002)
idea that selective attention causes representational shifts. In
particular, the model tries to acquire accurate categorization
strategies while paying attention to a small number of dimen-
sions. The second model was built on the basis of Bourne
et al. (1999,2006) claim that the strategy memorability is
the key process in representational shifts. This model tries
to acquire accurate strategies while memorizing and using a
smaller number of exemplars. The last model was somewhat
different from previous two models in that it assumes that
representational shifts occur by random chance. Given that

this model was built on the basis of a stochastic optimiza-
tion method, and it assumes that less-accurate simpler strate-
gies (i.e., rule) are more likely to be realized in earlier stages
of learning, while more complex strategies that bear higher
classification accuracy (i.e., exemplar-like representation) are
more likely to be maintained and applied in latter stages of
learning.

Computational Models

Overview

In the present paper, we used ALCOVE (Kruschke, 1992) as
the model of categorization, and CLEAR framework (Mat-
suka, Sakamoto, Chouchourelou & Nickerson, 2008) as the
model of learning. CLEAR framework is a straightforward
application of stochastic optimization method, namely Evolu-
tional Strategy to human learning models. We refer CLEAR-
augmented ALCOVE to as CaALCOVE. Three variants of
CaAlICOVE were tested in the present study, namely standard
CaALCOVE, attention-penalizing CaALCOVE, and (exem-
plar) memorization-penalizing CaALCOVE. The difference
among those models is their learning objectives and we test
how the learning objectives affect acquisition of different
types of internal representations.

Categorization Algorithm - ALCOVE

In ALCOVE (Kruschke, 1992), categorization decision is
based on the activations of stored exemplars. As shown in
Eq. 1, each exemplar’s activation in ALCOVE, scaled by
specificity, § (which determines generalization gradient), is
based on the inverse distance between an input, x, and a
stored exemplar, 1;, in multi-dimensional representational
space where each dimension (i) is scaled by non-negative se-
lective attention weights, a;. The exemplar activations are
then fed forward to the k-th output node (e.g., output for cate-
gory k), Oy, weighted by wy,j, which determines the strength
of association between exemplar j and output node k:
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where superscript n indicates n-th categorization strategy be-
ing utilized. Given that CaALCOVE’s learning algorithm
are based on stochastic optimization, dimensional attention
weights takes the following form to obtain reasonable stabil-
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where D, is a pseudo-attention weight. In CaALCOVE, Ds
(not as) are updated in learning.

The probability of categorizing input instance x to cate-
gory C is based on the activation of output node C' relative to
the activations of all output nodes:

exp (6-01(@))
Spexp (600 (@)

where ¢ controls decisiveness of the classification response,
and the superscript v indicates the strategy adopted to make a
categorization response.

Although CaALCOVE would always have multiple strate-
gies in mind, it opts for and applies a single strategy with
the highest predicted utility, indicated by the superscript v,
to make one response at a time (e.g., categorizing an input
instance).

In the traditional ALCOVE model, a single strategy con-
sisting of attention (i.e., a;) and association weights (i.e.,
wy;) is updated by a gradient descent method to minimize the
classification error. CaALCOVE optimizes multiple strate-
gies on the basis of their utility using an evolutionary comput-
ing method. We now describe the algorithms for optimizing
the utilities of strategies.

Learning Algorithms - CLEAR

Overview of Learning Algorithm In CLEAR framework
(see Matsuka, et al., 2008 for detailed discussion about its ef-
fectiveness and descriptive validity), Evolution Strategy (ES)
method was used as learning processes. As in a typical
ES application, we assumed three key processes in learn-
ing: crossover, mutation, and (survivor) selection. In the
crossover process, randomly selected categorization strate-
gies are combined to form a new strategy. In human cog-
nition, the crossover process can be interpreted as concep-
tual combination in which new strategies are created based on
merging ideas from existing useful strategies. In the mutation
process, each model coefficient is randomly altered, which
can be interpreted as strategy modification by randomly ad-
justing local attributes. In the selection process, a certain
number of strategies are deterministically selected on the ba-
sis of their usefulness.” in relation to the situational char-
acteristics. Those selected strategies will be kept in CaAL-
COVE’s memory trace, while non-selected strategies become
obsolete or are forgotten.

Unlike previous modeling approaches to category learning
research, which modify a single strategy (i.e., a single set of
coefficients), CaALCOVE maintains, modifies, and combines
a set of strategies. The idea of having a population of strate-
gies (as opposed to having an individual strategy) is important
because it allows not only the selection and concept combi-
nation in learning, but also the creation of diverse strategies,
making learning more robust. Thus, unlike previous mod-
els, CaALCOVE assumes that humans have the potential to
maintain a range of strategies and are able to apply a strategy
most suitable for a particular set of situational characteristics.
In CaALCOVE framework, one individual could simultane-
ously have multiple representation schemes.

Although CaALCOVE always has multiple strategies in
its knowledge space, it opts for and applies a single strat-

P(Clz) = (3)

egy with the highest predicted utility (e.g., accuracy, score,
etc.) to make one response at a time (e.g., categorize an in-
put instance). The functions for estimating the utility for each
strategy is described in a later section.

Hypotheses Combinations In CaALCOVE, randomly se-
lected pairs of strategies exchange information to create a new
strategy. For the sake of simplicity, we use the following nota-
tion {w(™, DM} € (™. CaALCOVE utilizes discrete re-
combination of coefficients and intermediary recombination
of the coefficient for self-adaptation. Thus,

4)

@ [o%Y ifUNI <05
00" =9 gir ~
) otherwise

where UNI is a random number drawn from the Uniformldis—
tribution. For self-adapting strategy, UEC) =0.5- (O’Z(p s
a§p 2)). This combination process continues until the number
of children strategies produced reaches the memory capacity
of CaALCOVE.

Hypotheses Modifications After the recombination pro-
cess, CAALCOVE randomly modifies its strategies, using a
self-adapting strategy. Thus,

oy (t+1) = 0 (1) - exp(N (0, 7)) ©)

0" (t+1) = 0" (t) + N(0,05" (¢ +1)) (6)

where ¢ indicates time, [ indicates coefficients, + defines
search width (via ¢’s), and N(0,0) is a random number
drawn from the Normal distribution with the corresponding
parameters.

Selection of Surviving Hypotheses After creating new sets
of strategies, CAALCOVE selects a limited number of strate-
gies to be maintained in its memory. In CaALCOVE, the
survivor selection is done deterministically, selecting best 10
strategies on the basis of estimated utility of strategies or
knowledge. The function defining utility of knowledge is de-
scribed in the next section.

Knowledge Utility Estimation

The utility of each strategy or a set of coefficients deter-
mines the survivor selection process in CaALCOVE, which
occurs twice. During categorization, it selects a single strat-
egy with the highest predicted utility to make a categoriza-
tion response (referred to as concept utility for response or
UR hereafter). During learning, it selects best fit strategies to
update its knowledge (utility for learning or UL hereafter). In
both selection processes, the strategy utility is subjectively
and contextually defined, and a general function is given
as: U(0") = T(E(0"),Q1(0"),...,Qr(0™)) where T is a
function that takes concept inaccuracy (i.e., E) and L contex-
tual factors (i.e., Q) and returns an estimated strategy utility
value (Note that learning is framed as a minimization prob-
lem).

In CaALCOVE, the predicted (in)accuracy of a strategy
during categorization is estimated based on a retrospective
verification function, which assumes that humans estimate
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the accuracies of the strategies by applying the current strate-
gies to previously encountered instances retrieved from a
memory trace . Thus,

G K 2
BO™) =33 = (a?,2@) [a - o (+@)]

g=1k=1
@)
where superscript g indicates a particular input-output pair,
G is the number of unique training pairs, and the exemplar
retention function = returns the retrieval strength g-th input-
output pair. The last term is the sum of squared error with d
being the desired output.

By assuming category structures being deterministic, the
following exemplar retention function, based on Anderson
and Schooler’s learning-forgetting function (1991), is used in
the present simulation study. Thus,

DGR

Vilz() =g (9)

)ONEDS

9 Vilz(D=z(9)

E(d(g), x(g)) — )

(1) +1)-9

Memory decay parameter, ¢, controls the speed of memory
decay, and 7 indicates how many instances were presented
since (9 appeared, with the current training being repre-
sented with “0.” Thus, 7 = 1 indicates z(9) appeared one
instance before the current trial. The denominator in the ex-
emplar retaining function normalizes retention strengths, and
thus it controls the relative effect of training exemplar, z(9),
in evaluating the accuracy of knowledge or strategies. E(6)
is strongly influenced by more recently encountered training
exemplars in early training trials, but it evenly accounts for
various exemplars in later training trials, simultaneously ac-
counting for the Power Law of Forgetting and the Power Law
of Learning (Anderson & Schooler, 1991; Newell & Rosen-
bloom, 1981).

Simulation

Three variants of CaAICOVE were tested in the present study,
namely standard CaALCOVE, attention-penalizing CaAL-
COVE, and (exemplar) memorization-penalizing CaAL-
COVE. The difference among those models is their learning
objectives (i.e., knowledge utility functions).

Standard CaALCOVE

The learning objective function for the standard CaAALCOVE
was given as Eq 7. This model assumes that the representa-
tional shifts during category learning occur by mere random
chance. That is, it assumes that simpler categorization strate-
gies (i.e., rule-like representation) are more likely to be hy-
pothesized and thus heavily utilized in earlier stages of learn-
ing. But as learning progresses, more complex and accurate
strategies based on exemplar-like representation will be re-
alized and tested, simply because creations of a larger num-
ber of hypotheses allow sufficient exploration of the solution
space.

Attention-penalizing CaALCOVE

Attention-penalizing CaALCOVE (CAL-AP, hereafter) as-
sumes that strong selective attention causes the represen-
tational shift. CAL-AP allocates most of its attention to
a smaller number dimensions in earlier stages of learning,
but it gradually allocates its attention to other dimensions
to achieve more accurate categorization. That is, it penal-
izes distributed attention in earlier stages, but the penalization
weakens as learning progresses. The underlying idea of CAL-
AP is basically the same as the model proposed by Johansen
& Parmeli (2002).

The knowledge utility function for CAL-AP is given as fol-

lows;:
()
v(6™) =E(6™)+ 1> A .
P (al(n)) + Z (al('n))
=1

©))
This function encourages CAL-AP to pay attention to a
smaller number of feature dimensions, or it penalizes CAL-
AP when it selectively pays attentions to many dimensions.
Note that the knowledge utility is estimated based on selective
attention weight a, but not pseudo-selective attention weight
D. )\, is a scalar that balances the trade-off between cate-
gorization accuracy and the attention penalization. The value
for )\, decreases as learning progresses, like the annealing
function used in Johansen & Palmeri (2002).

Memorization-penalizing CaALCOVE

Memorization-penalizing CAALCOVE (CAL-MP, hereafter)
assumes that selective memorization and usage of particular
exemplars causes the representational shift. That is, it as-
sumes that a smaller numbers of exemplars are memorized
and utilized in earlier stages of learning, causing CaAALCOVE
to exhibit categorization pattern that is consistent with a rule-
like representation. As in CAL-AP, this model also weakens
its penalization weight as learning progresses.

The knowledge utility function for CAL-AP is given as fol-

lows;
2
()
U(6™) =E(8™)+x Y ~ -
() + > (wi))

(10)
This function encourages CAL-MP to form a smaller set of
active links (i.e., a link whose relative value is higher in
its magnitude than other links) from exemplars and category
nodes, or it penalizes CAL-MP when it associates categories
with many exemplars (in terms of the relative values). In
other words, Eq 10 promotes CAL-MP to maintain a smaller
number of useful exemplars. Thus, when the memorization
penalization weight (\,,) is high, CAL-MP is more likely to
acquire a rule-link representation. In contrast, if its penal-
ization weight is small (e.g. knowledge accuracy outweighs
selective memorization of exemplars) then it would acquire
an exemplar-like representation. As in CAL-AP, the value for
A decreases as learning progresses.
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Figure 1: Results of Simulation. Generalizations profiles for Observed data (upper left), standard CAALCOVE (upper right),
attention-penalizing CaALCOVE (lower left), and memorization-penalizing CaALCOVE (lower right). R1 Gen. indicates
generalization pattern that is consistent with the categorization rule based on Dimension 1, and R3 Gen based on Dimension 3.
Ex. Gen indicates generalization pattern that is consistent with exemplar usage.

Method

The basic simulation procedures followed those of the orig-
inal study (Johansen & Palmeri, 2002). Table 1 shows
schematic representation of stimulus set, which was adapted
from Medin & Schaffer (1978). The models were run in a
simulated training procedure with 32 trial blocks, where each
block consisted of a random presentation of the nine unique
training exemplars (see Table 1) exactly once, in order to
learn the correct classification responses for the stimulus set.
After, 2nd, 4th, 8th, 16th, 24th, and the last training blocks,
the transfer tests were conducted using testing exemplars (i.e.,
T1 - T7). As in the original study, the responses to only T1,
T2, T4, TS5, and T6 were considered in the present simula-
tion. The model parameters were arbitrary selected: For all
three models 3 = 1.5, ¢! = 1. For standard CaALCOVE,
0=1, v=1, while those for other models were 0.5 and 0.5, re-
spectively. Within each model, knowledge utility for learning
(UL) and knowledge utility for response (UR) were assumed
to be identical. There were a total of 100 simulated subjects
for each model.

Results

Figure 1 shows observed and predicted generalization pro-
files. R1 Generalization (R1 Gen. in figure). indicates a
generalization pattern that is consistent with the categoriza-
tion rule based on Dimension 1 (i.e. responding AABBB
to transfer stimuli T1, T2, T4, TS5, and T6, see Johansen &

!'The value of ¢ does not affect model predictions

Palmeri for detailed discussion about generalization patterns),
and R3 Generalization is based on Dimension 3 (i.e. respond-
ing BBABA to the above mentioned stimuli). Exemplar Gen-
eralization (Ex. Gen.) indicates a generalization pattern that
is consistent with exemplar usage (i.e., responding ABBBA
to the stimuli). Note that as in the original simulation study,
we calculated the proportion of R1 Generalization, for exam-
ple, as the proportion of exact R1 Generalizations (AABBB)
and those that differed by one response.

In general, all three models were successful in replicat-
ing the observed phenomena. All three models tended to ex-
hibit the rule-based generalization patterns in earlier stages of
learning and gradually shifted to the exemplar-based general-
ization pattern. The attention-penalizing CaALOVE (CAL-
AP) seemed more successful than other models in showing
increased exemplar usage. However, at the same time CAL-
AP seemed least successful in not showing steady usages of
the rules (i.e., usage of the rules did not declined in the ob-
served data). It is rather intriguing that different learning ob-
jectives resulted in similar generalization patterns. The re-
sults of the present simulation suggest that representational
shifts observed in Johansen & Palmeri (2002) may be ex-
plained by selective attention (i.e. CAL-AP), selective mem-
orization of exemplars (CAL-MP), or mere random chance
(CaALCOVE).

Discussion

Since the predicted generalization patterns alone could not
differentiate the three models, we examined how each of the
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Table 1: Schematic representation of stimulus set used in sim-
ulations

Training Transfer
Cat DI D2 D3 D4 |ID DI D2 D3 D4

A 1 1 1 0| Tt 1 0 0 1
A 1 0 1 0| T2 1 1 1 1
A 1 0 1 1 T3 O 1 0 1
A 1 1 0 1 | T4 O 0 1 1
A 0 1 1 1 |T5 1 0 0 0
B 1 1 0 0 |T6e O 0 1 0
B 0 1 1 0|T7 O 1 0 0
B 0 0 0 1

B 0 0 0 0

three models exhibited such generalization patterns by ana-
lyzing acquired selective attention and exemplar-to-category
association weights.

Figure 2 shows acquired selective attention weights after
2nd (left column), 16th (middle column), and the last training
block (right column). The top row shows acquires attention
weights for standard CaALCOVE, the middle row for CAL-
AP, and the bottom row for CAL-MP. Although the three
models exhibited similar generalization patterns, the patterns
of selective attention distributions differed somewhat greatly.

In early stages of learning, CAL-AP tended to allocate ex-
treme attention weights to a smaller number of dimensions
as its learning objective function suggested. CAL-MP, on the
other hand, tended to evenly allocate its selective attention
weights, while CaALCOVE exhibited intermediate behav-
iors. These tendencies generally hold throughout the learning
processes.

A similar trend was obtained for association weights.
CAL-MP tended to have a smaller number of active links
between exemplars and categories, while CAL-AP tended to
have a somewhat larger number of active links. CAALCOVE
showed an intermediate pattern.

These analyses only confirm that the three models exhib-
ited similar generalization patterns with different internal rep-
resentation schema. We cannot infer which model(s) more
accurately accounts for the representational shift, because
there is no empirical data. However, these analyses are help-
ful in designing future empirical studies. For example, data
on selective attention allocation pattern (e.g. Matsuka &
Corter, 2008) would allow us to evaluate the three models
examined in the present study, which in turn provides rich in-
formation for understanding cognitive mechanism underlying
representational shifts.

Conclusions

Recent studies in category learning and usage have shown
that there are representational shifts during category learning
(Johansen & Palmeri, 2002, Bourne et al., 1999, 2006). In the
present study, we develop three models categorization that
consisted of three different learning objectives. The results
of simulation study indicated that the representational shift
observed in Johansen & Palmeri (2002) can be explained by
selective attention, selective exemplar memorization, or mere

random chance. Although three models exhibited very simi-
lar classification generalization patterns, their acquired inter-
nal representations (via different learning objective functions)
were rather different. Since there is no empirical data to eval-
uate the models, we could not infer their descriptive validity.
However, the results of simulation can be helpful in designing
future empirical studies.
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Figure 2: Learned relative selective attention weights for standard CAALCOVE (top row), attention-penalizing CaALCOVE

(middle row), and memorization-penalizing CAaALCOVE (bottom row). Left column shows learned attention weights at after

2nd training block, middle for 16th block, and right column for the last block.
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