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Abstract

How people achieve long-term goals in an imperfectly known
environment, via repeated tries and noisy outcomes, is an im-
portant problem in cognitive science. There are two inter-
related questions: how humansrepresent information, both
what has been learned and what can still be learned, and how
theychoose actions, in particular how they negotiate the ten-
sion between exploration and exploitation. In this work, we
examine human behavioral data in a multi-armed bandit set-
ting, in which the subject choose one of four “arms” to pull on
each trial and receives a binary outcome (win/lose). We im-
plement both the Bayes-optimal policy, which maximizes the
expected cumulative reward in this finite-horizon bandit envi-
ronment, as well as a variety of heuristic policies that varyin
their complexity of information representation and decision
policy. We find that theknowledge gradient algorithm, which
combines exact Bayesian learning with a decision policy that
maximizes a combination of immediate reward gain and long-
term knowledge gain, captures subjects’ trial-by-trial choice
best among all the models considered; it also provides the best
approximation to the computationally intense optimal policy
among all the heuristic policies.

Keywords: Bandit problems; human decision making; hu-
man active learning; knowledge gradient

Introduction
How humans achieve long-term goals in an imperfectly
known environment, via repeated tries and noisy outcomes,
is an important problem in cognitive science. The com-
putational challenges consist of the learning component,
whereby the observer updates his/her representation of
knowledge and uncertainty based on continual observations,
and the control component, whereby the observer chooses
an action that somehow balances between the need to ob-
tain immediate reward and to obtain information that assists
long-term reward accumulation.

A classical task setting used to study sequential decision-
making under uncertainty is the multi-armed bandit prob-
lem (Robbins, 1952). The bandit problems are a family of
reinforcement-learning problems where the decision maker
must choose among a set of arms on each trial: the reward
gained on each trial both has intrinsic value and informs the
decision maker about the relative desirability of the arms,
which can help with future decisions. In the basic bandit
setting, each arm has an unknown probability of generating
a reward on each trial. The problem is calledfinite hori-
zon if the total number of trials is finite; it is calledinfinite
horizonif the number of trials is infinite, in which case one
either discounts future rewards or tries to maximize average
reward per unit time. In this work, we focus on stationary,
non-discounted, finite-horizon bandit problems, where the
underlying reward rates are independent and identically (iid)
distributed across the arms.

Bandit problems elegantly capture the tension between
exploration (selecting an arm about which one is igno-
rant) and exploitation (selecting an arm that is known to
have relatively high expected reward), which is manifest in
many real-world decision-making situations involving noise
or uncertainty. Bandit problems have been well studied in
many fields, including statistics (Gittins, 1979), reinforce-
ment learning (Kaebling, Littman, & Moore, 1996; Sut-
ton & Barto, 1998), economics (Banks, Olson, & Porter,
2013, e.g.), psychology and neuroscience (Daw, O’Doherty,
Dayan, Seymour, & Dolan, 2006; Cohen, McClure, & Yu,
2007; Steyvers, Lee, & Wagenmakers, 2009; Lee, Zhang,
Munro, & Steyvers, 2011). There is no analytical solution
to the general bandit problem, though properties about the
optimal solution of special cases are known (Gittins, 1979).
For relatively simple, finite-horizon problems, the optimal
solution can be computed numerically via dynamic program-
ming (Kaebling et al., 1996), but its computational complex-
ity grows exponentially with the number of arms and with
the time horizon. In the psychology literature, a number of
heuristic policies, with varying levels of complexity in the
learning and control processes, have been proposed as possi-
ble strategies used by human subjects (Daw et al., 2006; Co-
hen et al., 2007; Steyvers et al., 2009; Lee et al., 2011). Most
models assume that humans either adopt simplistic policies
that retain little information about the past and sidestep long-
term optimization (e.g. win-stay-lose-shift andε-greedy), or
switch between an exploration and exploitation mode either
randomly (Daw et al., 2006) or discretely over time as more
is learned about the environment (Steyvers et al., 2009).

Here, we analyze a new model for human bandit choice
behavior, based on theknowledge gradient(KG) algorithm,
which has been developed by Frazier, Powell, and Dayanik
(2008) to solve problems in operations research. At each
time step, the KG policy chooses, conditioned on previous
observations, the option that maximizes future cumulative
reward gain. It is based on the myopic assumption that the
next observation is the last exploratory choice, used to learn
about the environment, and all remaining choices will be
exploitative, choosing the option with the highest expected
reward by the end of the next trial. Note that this myopic
assumption is only used in reducing the complexity of com-
puting the predicted value of each option, and not actually
implemented in practice – the algorithm may end up exe-
cuting arbitrarily many non-exploitative choices. Despite a
certain greedy aspect to the KG control policy, it is not com-
pletely short-sighted. In particular, it tends to explore more
when the number of trials left is large, because finding an
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arm with even a slightly better reward rate than the currently
best known one can lead to a large cumulative advantage in
future gain; on the other hand, when the number of trials left
is small, KG tends to exploit and stay with the currently best
known option, because it knows that finding a slightly better
option will not lead to large improvement, while the risk of
wasting time on a bad option is high. KG is also known to be
exactly optimal in certain special cases (Frazier et al., 2008),
such as when there are only two arms.

KG has several advantages over previously proposed algo-
rithms. Unlike the simple heuristic algorithms such as win-
stay-lose-shift andε-greedy, and in common with the other
Bayesian learning algorithms (Daw et al., 2006; Steyvers et
al., 2009; Lee et al., 2011), KG uses a sophisticated Bayesian
posterior distribution as its belief state at each time step.
Unlike the other Bayesian learning algorithms, KG grace-
fully and gradually transitions from primarily exploring to
primarily exploiting over the course of a finite-horizon ban-
dit experiment. Also unlike previously proposed algorithms,
which typically assumes that the stochastic component of
action selection is random or arbitrary, KG also provides
a more sophisticated and discriminating way to explore, by
normatively combining immediate reward expectation and
long-term knowledge gain. On the other hand, in contrast to
the optimal algorithm, which scales exponentially in compu-
tational complexity with respect to the number of remaining
timesteps, KG is computationally much simpler, incurring a
constant cost regardless of the number of timesteps left.

In the following, we first describe the experiment, then
describe all the learning and control models that we con-
sider. We then compare the performance of the models both
in terms of agreement with human behavior on a trial-to-trial
basis, and in terms of computational optimality.

Data
Participants
A total of 451 participants completed a series of bandit prob-
lems as part of ‘testweek’ at the University of Amsterdam.

Experimental procedure
Each participant completed 20 bandit problems in sequence,
all problems had 4 arms and 15 trials. The reward rates for
all games were generated independently from a Beta(2,2)
distribution, and were all done prior to data collection. All
participants thus played games with the same sets of reward
rates, but the order of the games was randomized. Partic-
ipants were aware that the reward rates in all games were
drawn from the same environment, but they were not told its
form, i.e. Beta(2,2). A representation of the basic experi-
mental interface is shown in Fig 1.

Modeling Methods
There exist multiple levels of complexity and optimality in
both the learning and the decision components of decision
making models of bandit problems. For the learning com-
ponent, we examine whether people learn any abstract rep-
resentation of the environment at all, and if they do, whether
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Figure 3. Basic design of the experimental interface.

Figure 1: Experiment interface. The four panels correspond
to the four arms, each of which can be chosen by pressing the
corresponding button. In each panel, successes from previ-
ous trials are shown as green bars, and failures as red bars.
At the top of each panel, the ratio of successes to failures,
if defined, is shown. The top of the interface provides the
count of the total number of successes to the current trial,
index of the current trial and index of the current game.

they only keep a mean estimate (running average) of the re-
ward rate of the different options, or also uncertainty about
those estimates, or indeed more complex meta-information,
such as the general abundance/scarcity of rewards. The de-
cision component can also differ in complexity in at least
two respects: the objective the decision policy tries to opti-
mize (e.g. reward versus information), and the time-horizon
over which the decision policy optimizes its objective (e.g.
greedy versus long-term). In this section, we introduce mod-
els that encompass different combinations of learning and
decision policies.

Bayesian Learning in Beta Environments

The observations are generated independently and identi-
cally (iid) from an unknown Bernoulli distribution for each
arm. We consider two Bayesian learning scenarios, either
subjects have a fixed belief about the distribution from which
the Bernoulli rates are drawn (“basic learning”), or they do
meta-learning about the parameters of that distribution over
time (“meta learning”). We explore the two scenarios below.
In either case, we assume the distribution that generates the
Bernoulli rates is a Beta distribution, Beta(α, β), which is a
conjugate prior, and whose two hyper-parameters,α andβ
are determined by the total number of rewards and failures
experienced so far, plus any pseudo-counts associated with
the prior.

Basic Learning Suppose we haveK arms with reward
rates,θg

k, k = 1, · · · ,K, which are independent and identi-
cally drawn from Beta(α, β) for the gth game. On thetth
trial, if the kth arm is chosen, a reward is attained with a
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Bernoulli distribution,Rt,g
k ∼ Bernoulli

(

θg
k

)

. Let St,g and
Ft,g be vectors of the number of successes and failures at-
tained from each arm at thetth trial of thegth game. The
model learns the individual reward rates using Bayes’ Rule:

Pr
(

θg|α, β, St,g, Ft,g) ∝ Pr
(

St,g, Ft,g |θg)Pr(θg |α, β)
θg ∼ Beta(α, β)

St,g
k ∼ Binomial

(

St,g
k +Ft,g

k , θg
k

)

The learner’s belief state at the trialt of the gameg, Bt,g,
is the set of posterior Beta distributions for each arm, and the
mean reward on each arm, based on the observed sequence,
is θ̂t,g = (α+St,g

k )/(α+β+St,g
k +Ft,g

K ).

Meta Learning We also consider the case that subjects
may use observations to learn about the true environmental
reward distribution (the true Beta distribution), correspond-
ing to the general abundance/scarcity of resources in the en-
vironment. In this case, observing an outcome on any arm
will affect the posterior distribution on all arms because of
the correlation induced by shared hyper-parameters of the
environment (Gelman, Carlin, Stern, & Rubin, 2004):

Pr
(

θg, α, β|St,g, Ft,g)∝ Pr
(

St,g, Ft,g |θg)Pr(θg |α, β)Pr(α, β)

The belief state on trialt of gameg, Bt,g, is a joint pos-
terior distribution over the reward rates and environmental
parameters, conditioned on the observed sequence.

Decision Policies
We consider five different decision policies. We first de-
scribe the optimal model, and then the four heuristic models
with increasing levels of complexity.

The Optimal Model The learning and decision problem
for bandit problems can be instantiated as a Markov Decision
Process with a finite horizon (Kaebling et al., 1996). Due
to the low dimensionality of the bandit problem here (i.e.
small number of arms and number of trials per game), the
optimal policy, up to a discretization of the belief state, can
be computed numerically according to Bellman’s dynamic
programming principle. LetVt(St , Ft) be the expected total
future reward on trialt. The optimal policy should satisfy
the following iterative property:

Vt,g(St,g, Ft,g) = max
k

E
[

Vt+1,g(St+1,g, Ft+1,g)
]

+ θ̂t,g
k

and the optimal decision,Dt,g, is decided by

Dt,g(St,g, Ft,g) = argmaxkE
[

Vt+1,g(St+1,g, Ft+1,g)
]

+ θ̂t,g
k

We solve the equation using dynamically programming,
backward in time from the last time step, whose value func-
tion and optimal policy are known for any belief state, i.e.
any setting of posterior Beta distribution for each of the
arms: it always choose the arm with the highest expected
reward,θ̂T,g, and the value function is just that expected re-
ward. In the simulations, we compute the optimal policy off-
line, for any conceivable setting of belief state on each trial

(up to a fine discretization of the belief state space), and then
apply the computed policy for each sequence of choice and
observations that each subject experiences. We use the term
“the optimal solution” to refer to the specific solution under
α = 2 andβ = 2, which is the true experimental design.

Win-Stay-Lose-Shift WSLS does not learn any abstract
representation of the environment, and has a very simple de-
cision policy. It assumes that the decision-maker continues
to choose an arm following a reward, but shifts to other arms
(with equal probabilities) following a failure to gain reward.

ε-Greedy The ε-greedy model assumes that decision-
making is driven by a parameterε that controls the bal-
ance between random exploration and exploitation inherent
in bandit problems. On each trial, with probabilityε, the
decision-maker chooses randomly (exploration), otherwise
chooses the arm with the greatest estimated reward rate (ex-
ploitation). ε-Greedy keeps simple estimates of the reward
rates, but does not track the uncertainty of the estimates. It is
not sensitive to the horizon, maximizing the immediate gain
with a constant rate, otherwise searching for information by
random selection1.

We call the situationk ∈ argmaxk′ θ̂
t,g
k ‘case 1’, and the

ε-greedy model is implemented as

Pr
(

Dt,g = k|ε, θ̂t,g)=

{

(1− ε)/Mt,g if case 1
ε/(K −Mt,g) otherwise

whereMt,g is the number of arms with the greatest estimated
value at thetth trial of thegth game.

ε-Infomax Theε-infomax model is similar to theε-greedy
model in that it chooses the arm with the greatest estimated
reward rate with probability 1− ε, and explores with proba-
bility ε. The difference is that, instead of random selection
for exploration, it selects the arm that results in the largest re-
duction in the expected total entropy. In our study, the arms
are independent given the same environmental distribution,
and the policy reduces to choose the arm with the largest
uncertainty. We useSt,g

k +F t,g
k as an approximate, simple

measure of the uncertainty associated with armk given the
state of the game. In this model, an arm may be chosen when
one of the two cases applies: in case 1, it has the greatest es-
timated reward rate; in case 2, it does not have the greatest
estimated reward rate, but has the least number of times be-
ing chosen. We implementε-infomax as

Pr
(

Dt,g = k|ε, θ̂t,g)=







(1− ε)/Mt,g if case 1
ε/Nt,g if case 2
0 otherwise

whereMt,g andNt,g are the number of arms that satisfy case
1 and 2, respectively, at thetth trial of thegth game.

The ε-infomax model uses both the mean estimates and
measure of uncertainty as criteria for action selection. Itis a

1The ε-Greedy model has a variant,ε-decreasing, where the
probability of random selection decreases over trials. However,
previous studies found thatε-decreasing had a poor fit to the same
data when compared with theε-greedy model (Zhang & Lee, 2010),
so we only consider theε-greedy model in this study.
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greedy heuristic, maximizing the immediate reward gain at
a constant rate.

Knowledge Gradient The knowledge gradient (KG) al-
gorithm (Ryzhov, Powell, & Frazier, 2012) is an approxi-
mation to the optimal policy, by pretending only one more
exploratory measurement is allowed, and assuming all re-
maining choices will exploit what is known after the next
measurement. It evaluates the expected change in each esti-
mated reward rate, if a certain arm were to be chosen, based
on the current belief state. Its mathematical expression is

vKG,t
k = E

[

max
k′

θ̂t+1
k′ |Dt = k, Bt

]

−max
k′

θ̂t
k′

The first term is the expected largest reward rate on the next
step if thekth arm were to be chosen, with the expectation
taken over all possible outcomes of choosingk. The KG
decision rule is

DKG,t,g = argmax
k

θ̂t,g
k +(T − t−1)vKG,t,g

k (1)

The first term of Equation 1 denotes the expected immedi-
ate reward by choosing thekth arm att of the gth game,
whereas the second term reflects the expected gain of total
remaining reward fromt + 1 to the last trial of the current
game. The formula for calculatingvKG,t,g

k for the binary
bandit problems can be found in Chapter 5 of Powell and
Ryzhov (2012).

Model Implementation and Agreement Calculation
We used modelagreementas a measure of how well it cap-
tures experimental data, which was calculated as the average
per-trial likelihood, conditioned on the observed game states.
We fit the models and calculated model agreement across all
participants.

WSLS is a fully deterministic paradigm, so the per-trial
likelihood is 1 for a win-stay decision, 1/3 for a lose-shift
decision, and 0 otherwise. All other models have at least
two free parameters,α and β, and theε-greedy and the
ε-infomax models have one additional parameter,ε. We
implemented the KG,ε-greedy andε-infomax models as
Bayesian graphical models under both learning frameworks.
We used a vague prior for the environmental parameters,
Pr(α,β) = (α+β)5/2, as suggested by Gelman et al. (2004),
because it is uniform on the psychologically interpretable
reparameterization,α/(α+β) and (α+β)−1/2. We used
uniform prior for ε. Model inference used combined sam-
pling algorithm, with Gibbs sampling ofε, and Metropo-
lis sampling ofα andβ. All chains contained 3000 steps,
with a burn-in size of 1000. All chains converged according
the R-hat measure (Gelman et al., 2004). We calculated the
model agreement as the proportion of same choices between
the model and the data, based on the full posterior predic-
tive distribution of choices given each observed state of the
game. For this study, we implemented the optimal model
only with basic learning because of the heavy computational
load.
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Figure 2: Model agreement with data simulated by the op-
timal solution under the correct prior of the environment.
Each bar shows the agreement of a model combining the cor-
responding decision policy and the learning framework. For
the ε-greedy (eG),ε-infomax (eINFO) and the KG models,
the error bars show the standard errors of the average agree-
ment based on a 4-fold cross-validation. WSLS has no pa-
rameters to fit and does not rely on any learning framework.
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Figure 3: Model agreement with human data. The figure is
generated in the same way as for Figure 2, except for that the
optimal model was only implemented with basic learning for
this study.

Results

Model Agreement with the Optimal Solution

As shown in Figure 2, the KG algorithm, under either learn-
ing framework, is able to approximate the optimal solution
well in terms of the average number of correct predictions.
In this sense, the KG policy is ‘process optimal’.ε-infomax
outperforms theε-greedy model, which implies that smarter
exploration for information gain increases the optimalityof
the heuristic. The simple WSLS model achieves model
agreement well above 60%. In fact, both WSLS and the opti-
mal model do win-stay with probability 1. The only situation
that WSLS does not resemble the optimal behavior is when
it shifts away from an arm that the optimal solution would
otherwise stay with.
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Figure 4: Behavioral patterns in the human data and the simulated data from a selection of the best- and worst-performing
models. The four panels show the trial-wise probability of win-stay, lose-shift, choosing the greatest estimated value, and
choosing the least known when it is an exploration trial, respectively. Probabilities are calculated based on simulated data
from each model at their MAP estimate, and are averaged across all games and all participants. The optimal solution shown
here uses the correct prior Beta(2,2).

Model Agreement with the Human Data

Figure 3 shows the average model agreement with human
data. Overall, the type of decision policy, other than the
learning framework, makes significant differences in the
model agreement. However, a decision policy tends to do
better under the meta learning framework — theε-greedy
model and the KG model have significantly greater model
agreement with meta learning.

We next break down the overall behavioral performance
into four finer measures: how often people adopt win-stay
and lose-shift, how often they exploit, and whether they use
random selection or search for the greatest amount of infor-
mation during exploration. We compare three of our models
that have the highest agreement with human data on these ad-
ditional behavioral criteria. Figure 4 shows the model anal-
ysis results. We show the patterns of the human subjects, the
optimal solution, the best performing decision policy (KG)
under both learning frameworks, and the simplest WSLS.

The first panel probably contains the most interesting re-
sults. It shows the trialwise probability of staying with the
same arm following a previous success. People show clear
sub-optimality by not staying with the same arm after an im-
mediate reward. In fact, obtaining a reward from any arm
should always increase the estimated value of the chosen
arm. Under the basic learning framework where unchosen
arms do not change in value, this means the optimal deci-
sion process should always do win-stay. This is consistent
with the curve of the optimal solution. As implied by Equa-
tion 1, KG considers the likelihood of an arm surpassing the
known best value upon chosen, and weights this knowledge
gain more heavily in the early stage of the game. In general,
during the early trials, it chooses the second-best arm witha
certain probability, not necessarily depending on the previ-
ous outcome. This explains the drop of the win-stay proba-
bility of KG during the early trials. When the learner is also
updating its knowledge of the environment, a previous suc-

cess will cause the environment to appear more rewarding,
making other arms more likely to surpass the current best
arm.

The second panel shows the trialwise probability of shift-
ing away following a previous failure. People, the optimal
solution, and KG show a decline in this probability over trial.
When the horizon is approaching, it becomes increasingly
important to stay with the arm that is known to be reasonably
good, even if it may occasionally yield in a failure, because
it is increasingly important to maximize the reward on the
current trial.

In general, the KG model with meta learning matches the
second-order trend of human data. However, there still exists
a big difference on the absolute scale, especially regarding
the probability of staying with ‘good’ arms — in fact, the
KG policy does win-stay and exploitation more often, and
resembles the optimal solution more than the human data.

Model Performance in Cumulative Reward
Collection

Fig 5 shows a comparison of the distribution of average re-
ward per trial achieved by the participants, the optimal so-
lution, and the knowledge gradient model. When playing at
their best fit parameterization based on the human data, KG
with meta learning and WSLS achieve nearly identical re-
ward distributions as the participants. Moreover, if we let
KG with meta learning forward play under the correct prior
knowledge of the environment, i.e.Beta(2,2), it is able to
achieve a nearly identical distribution as the optimal solu-
tion.

Discussion
Our analysis supports the KG decision policy under the meta
learning framework as a good fit to human data in bandit
problems. Our result implies that people might learn the in-
dividual reward rates as well as the general environment,
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Figure 5: Average reward achieved by the KG model for-
ward playing the bandit problems with the same reward
rates. KG achieves similar reward distribution as the hu-
man performance, with KG playing at its maximum a pos-
teriori probability (MAP) estimate,α = .1 andβ = .8. KG
achieves the same reward distribution as the optimal solu-
tion when playing with the correct prior knowledge of the
environment.

and the shared, latent environment induces a special type
of correlation among the bandit arms. The meta learning
framework is a psychologically sensible improvement to ba-
sic learning, because correct knowledge of the environment
can be critical for achieving the best performance, especially
when the environment can change over time or contexts. For
the decision component, our results support the KG policy,
which optimizes the semi-myopic goal of maximizing future
cumulative reward while assuming only one more time step
of exploration and strict exploitation thereafter (but does not
actually ever carry out that policy). The KG model under
the more general learning framework has the largest pro-
portion of correct predictions of human data, and can cap-
ture the trial-wise dynamics of human behavioral reasonably
well. KG achieves similar behavioral patterns as the optimal
model, and is computationally tractable, making it a plausi-
ble algorithm for human learning and decision-making

One remaining puzzle why human subjects tend to explore
more often than policies that optimize the specific utility of
the bandit problems. One possibility is that people believe
the task environment can undergo stochastic changesand ex-
hibit sequential effects due to recent trial history, as in many
other psychological task contexts (Yu & Cohen, 2009) . This
would be an interesting line of future inquiry.
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