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Abstract Bandit problems elegantly capture the tension between

How people achieve long-term goals in an imperfectly known exploration (selecting an arm about which one is igno-
environment, via repeated tries and noisy outcomes, is anim 'ant) and exploitation (selecting an arm that is known to
portant problem in cognitive science. There are two inter- have relatively high expected reward), which is manifest in
related questions: how humarepresent informationboth many real-world decision-making situations involving smi
what has been learned and what can still be learned, and how taintv. Bandit bl h b Il studied i
they choose actionsin particular how they negotiate the ten- O Uncertainty. bandit problems have been well studied in
sion between exploration and exploitation. In this work, we many fields, including statistics (Gittins, 1979), reirder
examine human behavioral data in a multi-armed bandit set- ment learning (Kaebling, Littman, & Moore, 1996; Sut-
ting, in which the subject choose one of four “arms” to pull on o ! ’ !
each trial and receives a binary outcome (win/lose). We im- (0N & Barto, 1998), economics (Banks, Olson, & Porter,
plement both the Bayes-optimal policy, which maximizes the 2013, e.g.), psychology and neuroscience (Daw, O’'Doherty,
expected cumulative reward in this finite-horizon banditien Dayan, Seymour, & Dolan, 2006; Cohen, McClure, & Yu
ronment, as well as a variety of heuristic policies that vary o X . ' G ' ’
their complexity of information representation and damsi ~ 2007; Steyvers, Lee, & Wagenmakers, 2009; Lee, Zhang,
policy. We find that thénowledge gradient algorithmwhich Munro, & Steyvers, 2011). There is no analytical solution
combines exact Bba.‘yeﬁ'a” '?.am'”%W'tth a dec(ljsmr) po“gill tha  to the general bandit problem, though properties about the
maximizes a compination of iImmediate reward gain and long- . . . .
term knowledge gain, captures subjects’ trial-by-triavice optimal sfolutlor} of speplal cases are known (Gittins, 1979)
best among all the models considered; it also provides tite be ~ For relatively simple, finite-horizon problems, the optima
approximation 0 thet_coqutatlonally intense optimal@oli  solution can be computed numerically via dynamic program-
imong 3 : edL_Jt“S ICbFl)O 'C'esr; decisi King: h ming (Kaebling et al., 1996), but its computational complex
eywor ds: andit problems; human decision making; nu- : H : :
man active learning; knowledge gradient ity grows ex_ponen'ually with the num_ber of arms and with
the time horizon. In the psychology literature, a number of
; heuristic policies, with varying levels of complexity ingh
Introduction P ying plexity
learning and control processes, have been proposed as possi
. . . g p prop p
How humans achieve long-term goals in an imperfectlyp|e strategies used by human subjects (Daw et al., 2006; Co-
known environment, via repeated tries and noisy outcomesen et al., 2007: Steyvers et al., 2009; Lee et al., 2011)tMos
is an important problem in cognitive science. The cOmM-models assume that humans either adopt simplistic policies
putational challenges consist of the learning componeninat retain little information about the past and sidesteyg+
whereby the observer_ updates his/her _ representano_n ®rm optimization (e.g. win-stay-lose-shift aagreedy), or
knowledge and uncertainty based on continual observationgytch between an exploration and exploitation mode either
and the control component, whereby the observer choosggndomly (Daw et al., 2006) or discretely over time as more

an action that somehow balances between the need 10 Of|earmed about the environment (Steyvers et al., 2009).
tain immediate reward and to obtain information that assist

long-term reward accumulation. Here, we analyze a new model for human bandit choice
A classical task setting used to study sequential decisionbehavior, based on tHeowledge gradienKG) algorithm,
making under uncertainty is the multi-armed bandit prob-which has been developed by Frazier, Powell, and Dayanik
lem (Robbins, 1952). The bandit problems are a family of(2008) to solve problems in operations research. At each
reinforcement-learning problems where the decision maketime step, the KG policy chooses, conditioned on previous
must choose among a set of arms on each trial: the rewambservations, the option that maximizes future cumulative
gained on each trial both has intrinsic value and informs theeward gain. It is based on the myopic assumption that the
decision maker about the relative desirability of the armsnext observation is the last exploratory choice, used tmlea
which can help with future decisions. In the basic banditabout the environment, and all remaining choices will be
setting, each arm has an unknown probability of generatingxploitative, choosing the option with the highest expecte
a reward on each trial. The problem is calliwite hori-  reward by the end of the next trial. Note that this myopic
zonif the total number of trials is finite; it is callemfinite ~ assumption is only used in reducing the complexity of com-
horizonif the number of trials is infinite, in which case one puting the predicted value of each option, and not actually
either discounts future rewards or tries to maximize averagimplemented in practice — the algorithm may end up exe-
reward per unit time. In this work, we focus on stationary,cuting arbitrarily many non-exploitative choices. Despit
non-discounted, finite-horizon bandit problems, where thecertain greedy aspect to the KG control policy, it is not com-
underlying reward rates are independentand identicadly (i pletely short-sighted. In particular, it tends to explorersn
distributed across the arms. when the number of trials left is large, because finding an
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arm with even a slightly better reward rate than the curyentl

best known one can lead to a large cumulative advantage in Polnts this game: 4 e some et
future gain; on the other hand, when the number of trials left | rao:0.000 . Rato: 0,667 . Ralio: 0,667 . Ratio: —
is small, KG tends to exploit and stay with the currently best | .| Y B! N
known option, because it knows that finding a slightly better | = » 1= 1=
option will not lead to large improvement, while the risk of ﬁ ﬁ ] i ] i
wasting time on a bad option is high. KG is also knownto be | » w0 1w 1w

exactly optimal in certain special cases (Frazier et aD820
such as when there are only two arms.

KG has several advantages over previously proposed algo
rithms. Unlike the simple heuristic algorithms such as win-
stay-lose-shift and-greedy, and in common with the other
Bayesian learning algorithms (Daw et al., 2006; Steyvers et
al., 2009; Lee et al., 2011), KG uses a sophisticated Bayesia
posterior distribution as its belief state at each time .step |
Unlike the other Bayesian learning algorithms, KG grace-
fully and gradually transitions from primarily exploring t
primarily exploiting over the course of a finite-horizon ban Figure 1: Experiment interface. The four panels correspond
dit experiment. Also unlike previously proposed algoriym  to the four arms, each of which can be chosen by pressing the
which typically assumes that the stochastic component oforresponding button. In each panel, successes from previ-
action selection is random or arbitrary, KG also providesous trials are shown as green bars, and failures as red bars.
a more sophisticated and discriminating way to explore, byat the top of each panel, the ratio of successes to failures,
normatively combining immediate reward expectation andf defined, is shown. The top of the interface provides the
long-term knowledge gain. On the other hand, in contrast tgount of the total number of successes to the current trial,

the optimal algorithm, which scales exponentially in compu index of the current trial and index of the current game.
tational complexity with respect to the number of remaining

timesteps, KG is computationally much simpler, incurring a

constant cost regardless of the number of timesteps left.  they only keep a mean estimate (running average) of the re-
In the following, we first describe the experiment, thenward rate of the different options, or also uncertainty abou

describe all the learning and control models that we conthose estimates, or indeed more complex meta-information,

sider. We then compare the performance of the models botstich as the general abundance/scarcity of rewards. The de-

in terms of agreement with human behavior on a trial-td-tria Cision component can also differ in complexity in at least

I Hal

Choice 1 l l Choice 2 l l Choice 3 l l Choice 4 l

L ]

basis, and in terms of computational optimality. two respects: the objective the decision policy tries ta-opt
mize (e.g. reward versus information), and the time-harizo

Data over which the decision policy optimizes its objective (e.g

Participants greedy versus long-term). In this section, we introduce-mod

els that encompass different combinations of learning and

A total of 451 participants completed a series of bandit probdecision policies,

lems as part of ‘testweek’ at the University of Amsterdam.

Experimental procedure Bayesian L earning in Beta Environments

Each participant completed 20 bandit problems in sequenc
all problems had 4 arms and 15 trials. The reward rates foarm We consider two Bayesian leaming scenarios, either
all games were generated independently from a ; , : o= _—
dist?ibution and ?/vere all done pF;ior to dgta coIIec(t?fﬁ Al Subjects have a fixed belief about the distribution from \whic

participants thus played games with the same sets of rewaqu)'e Bernou_lll rates are drawn (*basic Iearnlng ), or they do
rates, but the order of the games was randomized. Partié’peta—‘llearnmg ab_out”the parameters of that dlsmbu“cm ov
ipants were aware that the reward rates in all games Welléme_( meta learning”). We eXp'OTe the two scenarios below.
drawn from the same environment, but they were not told itén e|ther_case, we assume th_e d|_str|but|on that g_ene_raﬂees th
form, i.e. Betd2,2). A representation of the basic experi- Bernoulh rates is a Beta distribution, Bt ), which is a
mental interface is shown in Fig 1. conjugate prior, and whose two hyper-parameterand 3
are determined by the total number of rewards and failures

M odeling M ethods experienced so far, plus any pseudo-counts associated with

the prior.

é[he observations are generated independently and identi-
?'ally (iid) from an unknown Bernoulli distribution for each

There exist multiple levels of complexity and optimality in
both the learning and the decision components of decisioBasic Learning Suppose we hav& arms with reward
making models of bandit problems. For the learning com-ates,6Y, k = 1,---,K, which are independent and identi-
ponent, we examine whether people learn any abstract repally drawn from Bet&a, ) for the gth game. On théth
resentation of the environment at all, and if they do, wheethetrial, if the kth arm is chosen, a reward is attained with a
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Bernoulli distribution,RL’g ~ Bernoulli(eg). Let S'9 and  (up to a fine discretization of the belief state space), aad th
F“9 be vectors of the number of successes and failures agpply the computed policy for each sequence of choice and
tained from each arm at th¢h trial of thegth game. The observations that each subject experiences. We use the term
model learns the individual reward rates using Bayes’ Rulethe optimal solution” to refer to the specific solution unde

o = 2 andp = 2, which is the true experimental design.

Pr(6%a,p,sS"9, F9 O Pr(s'9 F-969Pr(6% a,p) . _
80 ~ Beta(a,B) W|n-Stay-LpseSh|ft WSLS does not learn any apstract
" _ ? 9. ctg ag representation of the environment, and has a very simple de-
% ~ B'nom'a'(SL’ +Fc6) cision policy. It assumes that the decision-maker connue
to choose an arm following a reward, but shifts to other arms

) H t’g
The learner's belief state at the triabf the gamey, B%, (with equal probabilities) following a failure to gain revda

is the set of posterior Beta distributions for each arm, &ed t
mean reward on each arm, based on the observed sequenedsreedy The e-greedy model assumes that decision-
is69 = (a +$g)/(a + B+$g+ F,tgg). making is driven by a parameterthat controls the bal-

. . . ance between random exploration and exploitation inherent
Meta Learning We also consider the case that subjects P P

. i |rr bandit problems. On each trial, with probability the
may use observations to learn about the true env'ronment%ecision-maker chooses randomly (exploration), otherwis
reward distribution (the true Beta distribution), corresg- i

ina to the general abundance/scarcity of resources in the echooses the arm with the greatest estimated reward rate (ex-
virg nm ntg In thi bservin )r/1 {Come on anv ar loitation). e-Greedy keeps simple estimates of the reward

ronment. S case, observing an outcome on any a ates, but does not track the uncertainty of the estimatés. |
will affect the posterior distribution on all arms because o

the correlation induced by shared hyper-parameters of th\%m sensitive to the horizon, maximizing the immediate gain
. : e ith nstant r herwi rching for informatipn
environment (Gelman, Carlin, Stern, & Rubin, 2004): th a constant rate, otherwise searching for informatipn b

random selectioh A
Pr (69, a, BS-9, F19) 0 Pr(s-9, F-969) Pr(69 o, B) Pr(a, B) We call the si_tugtiork € argma%efgg ‘case 1, and the
e-greedy model is implemented as
'_rhe pell_ef s_tate on trial of gameg, BY9, is ajomt pos- Pr(DbO — Kle §9) (1—¢) /M9 if case _1

terior distribution over the reward rates and environmlenta ( €, ) g/ (K —MU9) otherwise
parameters, conditioned on the observed sequence.

o L whereM! 9 is the number of arms with the greatest estimated
Decision Policies value at theth trial of thegth game.
We consider five different decision policies. We first de-
scribe the optimal model, and then the four heuristic model
with increasing levels of complexity.

§-I nfomax Thee-infomax model is similar to the-greedy
model in that it chooses the arm with the greatest estimated
reward rate with probability + €, and explores with proba-
The Optimal Model The learning and decision problem bility . The difference is that, instead of random selection
for bandit problems can be instantiated as a Markov Decisiofor exploration, it selects the arm that results in the latge-
Process with a finite horizon (Kaebling et al., 1996). Dueduction in the expected total entropy. In our study, the arms
to the low dimensionality of the bandit problem here (i.e.are independent given the same environmental distribution
small number of arms and number of trials per game), theind the policy reduces to choose the arm with the largest
optimal policy, up to a discretization of the belief statanc uncertainty. We uséi(’g + F;’g as an approximate, simple
be computed numerically according to Bellman’s dynamicmeasure of the uncertainty associated with &rgiven the
programming principle. Le¢' (S, F') be the expected total state of the game. In this model, an arm may be chosen when
future reward on triat. The optimal policy should satisfy one of the two cases applies: in case 1, it has the greatest es-

the following iterative property: timated reward rate; in case 2, it does not have the greatest
Loty cto t+10/ct+1g ctilg At estimated reward rate, but has the least number of times be-
Vh9(SH9, FhY) = maxE (VLS9 FHL9)] 48y ing chosen. We implemestinfomax as
. - , . 1—-g)/M49  ifcasel
and the optimal decisiol"9, is decided b A ( .
P o y Pr(D"9 =k|e, 649) = ¢ &/N"9 if case 2
D49(SH9, F19) = argmaxE [V!H19(S+19 FHia)] 4 é&g 0 otherwise

. . . . whereM"9 andN"9 are the number of arms that satisfy case
We solve the equation using dynamically programming,, - s respectively, at theh trial of thegth game.

backward in time from the last time step, whose value func- : .
: . . . . The e-infomax model uses both the mean estimates and
tion and optimal policy are known for any belief state, i.e. . L : .

. : S measure of uncertainty as criteria for action selectiois. &t
any setting of posterior Beta distribution for each of the
arms: it always choose the arm with the highest expected The e-Greedy model has a variart;decreasing, where the

reward,8™9, and the value function is just that expected re-Probability of random selection decreases over trials. éles,
' ' previous studies found thatdecreasing had a poor fit to the same

V_Vard- Inthe simula.tions, we compute the optimal policy off- data when compared with tieegreedy model (Zhang & Lee, 2010),
line, for any conceivable setting of belief state on eadd tri so we only consider the.greedy model in this study.
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greedy heuristic, maximizing the immediate reward gain a
a constant rate.

1
[l Basic Learn
0.9][_IMeta Learn
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WSLS eG eINFO KG

Knowledge Gradient The knowledge gradient (KG) al-

gorithm (Ryzhov, Powell, & Frazier, 2012) is an approxi-
mation to the optimal policy, by pretending only one more
exploratory measurement is allowed, and assuming all re
maining choices will exploit what is known after the next
measurement. It evaluates the expected change in each e
mated reward rate, if a certain arm were to be chosen, bast
on the current belief state. Its mathematical expression is

(o))

o
)

Model Agreement with Optimal

»

V' =E |maxdf | D' =k B'| — maxd],
K § Figure 2: Model agreement with data simulated by the op-
The first term is the expected largest reward rate on the neffmal solution under the correct prior of the environment.
step if thekth arm were to be chosen, with the expectationEach bar shows the agreement of a model combining the cor-
taken over all possible outcomes of chooskag The KG responding decision policy and the learning framework. For

decision rule is the e-greedy (eG)g-infomax (eINFO) and the KG models,
the error bars show the standard errors of the average agree-
DKC.L9 — arg ”laXéL’g +(T-t—1) \}k<G~,ta9 (1)  ment based on a 4-fold cross-validation. WSLS has no pa-

rameters to fit and does not rely on any learning framework.

The first term of Equation 1 denotes the expected immedi-
ate reward by choosing thgh arm att of the gth game,

whereas the second term reflects the expected gain of tot | 0.9| [EBasic Leam
remaining reward front + 1 to the last trial of the current 2 [_IMeta Learn
game. The formula for calcuI<';1tin@L<G’t’g for the binary gos
bandit problems can be found in Chapter 5 of Powell anc g
Ryzhov (2012). =07
c
Model Implementation and Agreement Calculation g o6
We used modehgreemengs a measure of how well it cap- g‘é,o.s
tures experimental data, which was calculated as the awerar <
per-trial likelihood, conditioned on the observed gamesta 0.4

We fit the models and calculated model agreement across ¢ WSLS ~ eG  Optimal eINFO  KG

participants.

WSLS is a fully deterministic paradigm, so the per-trial Figure 3: Model agreement with human data. The figure is
likelihood is 1 for a win-stay decision,/B for a lose-shift generated in the same way as for Figure 2, except for that the
decision, and 0 otherwise. All other models have at leasoptimal model was only implemented with basic learning for
two free parametersy and B, and thee-greedy and the this study.
e-infomax models have one additional parameter, We
implemented the KGg-greedy ande-infomax models as
Bayesian graphical models under both learning frameworks. Results
We used a vague prior for the environmental parameters,

Pr(a,B) = (a +B)*?, as suggested by Gelman et al. (2004),M odel Agreement with the Optimal Solution

because it is uniform on the psychologically interpretable

reparameterizationy/ (o + ) and (o + [3)’1/2. We used As shown in Figure 2, the KG algorithm, under either learn-
uniform prior fore. Model inference used combined sam- ing framework, is able to approximate the optimal solution
pling algorithm, with Gibbs sampling of, and Metropo- well in terms of the average number of correct predictions.
lis sampling ofa and3. All chains contained 3000 steps, In this sense, the KG policy is ‘process optimaFinfomax
with a burn-in size of 1000. All chains converged accordingoutperforms the-greedy model, which implies that smarter
the R-hat measure (Gelman et al., 2004). We calculated thexploration for information gain increases the optimatify
model agreement as the proportion of same choices betwedhe heuristic. The simple WSLS model achieves model
the model and the data, based on the full posterior predicagreement well above 60%. In fact, both WSLS and the opti-
tive distribution of choices given each observed state ef th mal model do win-stay with probability 1. The only situation
game. For this study, we implemented the optimal modethat WSLS does not resemble the optimal behavior is when
only with basic learning because of the heavy computationat shifts away from an arm that the optimal solution would
load. otherwise stay with.
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P(stay|win) P(shift|lose) P(best value) P(least known)
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= Human
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3 15
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Figure 4. Behavioral patterns in the human data and the atedildata from a selection of the best- and worst-performing
models. The four panels show the trial-wise probability dfistay, lose-shift, choosing the greatest estimatedeyaind
choosing the least known when it is an exploration trialpessively. Probabilities are calculated based on simdldega
from each model at their MAP estimate, and are averagedsatbgames and all participants. The optimal solution shown
here uses the correct prior B€232).

Modd Agreement with the Human Data cess will cause the environment to appear more rewarding,

Figure 3 shows the average model agreement with humamaking other arms more likely to surpass the current best
arm.

data. Overall, the type of decision policy, other than the' o N )
learning framework, makes significant differences in the 1€ second panel shows the trialwise probability of shift-

model agreement. However, a decision policy tends to dd9 away following a previous failure. People, the optimal
better under the meta learning framework — thgreedy solution, and KG show a decline in this probability overltria

model and the KG model have significantly greater model'Vhen the horizon is approaching, it becomes increasingly
agreement with meta learning. important to stay with the arm that is known to be reasonably

We next break down the overall behavioral performancé?©0d: even if it may occasionally yield in a failure, because

into four finer measures: how often people adopt Win-sta)}t is increasingly important to maximize the reward on the

and lose-shift, how often they exploit, and whether they us&urrent trial. , _

random selection or search for the greatest amount of infor- N 9éneral, the KG model with meta learning matches the
mation during exploration. We compare three of our model$€cond-ordertrend of human data. However, there stiltexis

that have the highest agreementwith human data on these a@2i9 difference on the absolute scale, especially reggrdin
ditional behavioral criteria. Figure 4 shows the model anal th€ probability of staying with ‘good” arms — in fact, the

ysis results. We show the patterns of the human subjects, tH&C Policy does win-stay and exploitation more often, and
optimal solution, the best performing decision policy (KG) resembles the optimal solution more than the human data.

under bpth learning frameworks,-and the simplest WSLS. Model Performance in Cumulative Reward

The first panel probably contains the most interesting reollection
sults. It shows the trialwise probability of staying witheth
same arm following a previous success. People show cledrd 5 shows a comparison of the distribution of average re-
sub-optimality by not staying with the same arm after an im-ward per trial achieved by the participants, the optimal so-
mediate reward. In fact, obtaining a reward from any armution, and the knowledge gradient model. When playing at
should always increase the estimated value of the chosdReir best fit parameterization based on the human data, KG
arm. Under the basic learning framework where unchoseMith meta learning and WSLS achieve nearly identical re-
arms do not change in value, this means the optimal decivard distributions as the participants. Moreover, if we let
sion process should always do win-stay. This is consisteri{G With meta learning forward play under the correct prior
with the curve of the optimal solution. As implied by Equa- knowledge of the environment, i.@eta(2,2), it is able to
tion 1, KG considers the likelihood of an arm surpassing th@chieve a nearly identical distribution as the optimal solu
known best value upon chosen, and weights this knowledgon-
gain more heavily in the early stage of the game. In general, . .
during the early trials, it chooses the second-best armavith Discussion
certain probability, not necessarily depending on theiprev Our analysis supports the KG decision policy under the meta
ous outcome. This explains the drop of the win-stay probatearning framework as a good fit to human data in bandit
bility of KG during the early trials. When the learner is also problems. Our result implies that people might learn the in-
updating its knowledge of the environment, a previous sucedividual reward rates as well as the general environment,
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