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Abstract 

Human randomness perception is commonly described as 
biased. This is because when generating random sequences 
humans tend to systematically under- and over-represent 
certain sub-sequences relative to the number expected from 
an unbiased random process. In a purely theoretical analysis 
we have previously suggested that common misperceptions of 
randomness may actually reflect genuine aspects of the 
statistical environment, once cognitive constraints are taken 
into account which impact on how that environment is 
actually experienced. In the present study we provide a 
preliminary test of this account, comparing human-generated 
against unbiased process-generated binary sequences. 
Crucially we apply metrics to both sets of sequences that 
reflect constraints on human experience. In addition, 
sequences are compared using statistics that are shown to be 
more appropriate than a standard expected value analysis. We 
find preliminary evidence in support of our theoretical 
account and challenge the notion of bias in human 
randomness perception. 

Keywords: Randomness perception; random sequence 
generation, cognitive biases. 

Introduction 

Randomness is the flip side of statistical structure. 

Researchers interested in human beings as ‘intuitive 

statisticians’ have consequently long been interested in 

people’s ability to identify patterns of data as random. A 

long tradition of research has reached rather negative 

conclusions about people’s intuitive understanding of 

randomness. Whereas early studies focussed primarily on 

people’s ability to generate random sequences (see e.g., 

Wagenaar, 1972), later work has also examined people’s 

ability to judge sequences as random (see e.g., Kahneman & 

Tversky, 1972; Bar-Hillel & Wagenaar, 1991; Oskarsson et 

al. 2009).  

Both studies of sequence generation and production have 

found evidence of similar biases, in particular a bias toward 

over-alternation between the different possible outcomes, 

such as ‘heads’ (H) or ‘tails’ (T), in binary sequences. This 

alternation bias has frequently been interpreted as evidence 

for a belief in the ‘gambler’s fallacy’ (GF), that is, the 

erroneous belief that an increasing run of one outcome (e.g., 

HHHHHH…) makes the other outcome ever more likely 

(but see e.g., Edwards, 1961). Such a belief, which can 

indeed be found among gamblers around the world 

(Clotfelter & Cook, 1993; Terrell, 1998; Tonneato et al., 

1997; Croson & Sundali, 2005), may reflect a mistaken 

conception of random processes as ‘self-correcting’ in such 

a way as to maintain an equal balance between the possible 

outcomes (for other explanations see e.g., the review by 

Hahn, 2011).  

However, the concept of randomness is a difficult, and 

often counter-intuitive, one not just for gamblers or 

experimental participants, but also for experimenters (on the 

concept of randomness see e.g., Beltrami, 1999), and 

extensive critiques have shown much of the empirical 

research on lay understanding of randomness to be 

conceptually flawed (see in particular, Ayton, Hunt & 

Wright, 1989; Nickerson, 2002; but also Lopes, 1982).  

Aforementioned evidence from real-world gamblers 

aside, it is thus less clear than might be expected how good 

or bad lay people’s ability to both discern and mimic the 

output of random sources actually is.  

 Research with novel tasks, that do not suffer from 

the conceptual flaws identified, have tended to confirm 

some element of bias in people’s performance (e.g., 

Rapaport & Budescu, 1982; Olivola & Oppenheimer, 2008) 

while finding also that participants’ performance is 

considerably better than deemed by past research (see e.g., 

Lopes & Oden, 1981; Nickerson & Butler, 2009). 

In particular, it has been argued that people’s 

performance may actually be quite good given their actual 

experience of random sequences, whether inside or outside 

the lab. William and Griffiths (2013) show how seemingly 

poor performance on randomness judgment tasks may stem 

from the genuine paucity of the available statistical 

evidence. Hahn & Warren (2009) similarly argue that 

common biases and misperceptions of randomness may 

actually reflect genuine aspects of the statistical 

environment, once it is taken into account how that 

environment is actually experienced. Specifically, Hahn and 

Warren demonstrate that if human experience of a stream of 

binary random events is assumed to be i) finite and ii) 

constrained by the limitations of short-term memory and/or 

attention, then based upon highly counter-intuitive 
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mathematical results, not all binary sub-strings are equally 

likely to occur. 

We describe this theoretical work next in more detail, 

before going on to present the results of a behavioural 

experiment that looks for preliminary evidence that human 

perception of randomness conforms to the theoretical 

treatment outlined. 

 Experiencing Random Sequences 

Hahn & Warren’s account relies upon a simple 

model of how a human might experience an unfolding 

sequence of random events. It is proposed that humans have 

a limited capacity window of experience of length k that has 

access to the present event and preceding k-1 events. This 

window slides one event at a time through an unfolding 

finite sequence of length n > k. That humans could only ever 

experience a finite stream of events is incontrovertible. 

Further, given the well-characterized bounds on human 

short-term memory capacity and/or attention span, this 

limited capacity, sliding window of experience account 

seems plausible.  

Crucially, when sub-sequences of length k are counted 

amongst a longer finite sequence of length n using the 

sliding window analysis suggested above, certain sub-

sequences are more likely to not occur, even when the 

generation process is unbiased. In particular perfect runs of 

one outcome have highest non-occurrence probability (or 

conversely lowest occurrence rate), followed by perfect 

alternations of the two outcomes. This highly counter-

intuitive mathematical result is illustrated in figure 1B; the 

unbroken line represents the occurrence rates for the 16 

possible subsequences of length 4. For example, the 

occurrence rate for the perfect run subsequence 0000 is 

around 0.47 meaning that this subsequence doesn’t appear 

at all on around 53% of all sequences of length 20 generated 

by an unbiased random process. In contrast the occurrence 

rate for subsequence 0001 is around 0.75 meaning that this 

subsequence doesn’t appear on only around 25% of 

unbiased sequences of length 20. Hahn & Warren (2009) 

argue that if human experience of unfolding random events 

mimics the sliding window, then this could explain three 

key tendencies of human randomness perception which are 

taken as evidence of bias: 

i) a tendency to think that sequences with some 

irregularity are more likely given an unbiased coin 

ii) an expectation of equal numbers of heads and tails 

within a sequence 

iii) a tendency to over-alternate between outcomes 

when generating random sequences 

Based on theoretical data of the kind presented here 

(figure 1B unbroken line), Hahn & Warren argue that i) is 

reasonable, i.e. the figure demonstrates that there is 

statistical support for the intuition that regular subsequences 

(e.g. 1111, 0101) occur less often than irregular 

subsequences (e.g. 0100, 1101). Hahn & Warren also argue 

that ii) is consistent with the sliding window account since it 

is difficult to distinguish between the vast majority of 

sequences using occurrence rate (figure 1B, unbroken line) 

suggesting judgments should be based not on an explicit 

coding of each subsequence but something simpler such as 

the proportion of heads. Finally Hahn & Warren argue iii) 

follows directly from the sliding window account since 

short sequences tend to have more alternations between 

outcomes than expected in an infinite series (Kareev, 1992).  

Here we examine the characteristics of human random 

sequence generation in light of the theoretical account of 

Hahn & Warren (2009). To preempt our results we find that, 

in agreement with previous studies, human behavior departs 

markedly from that expected from a theoretical unbiased 

random generating process when compared on the expected 

frequency of occurrence of any binary sub-sequence. For an 

unbiased random process these expected frequencies should 

all be equal for any specified sub-sequence length. 

However, we also show that human sequences are 

remarkably similar to those of an unbiased random 

generation process when other methods of comparison are 

used which are relevant to the sliding window account (e.g. 

sub-sequence occurrence rate or direct comparison of sub-

sequence frequency distributions for a given window 

length), and that this is particularly evident at sub-sequence 

lengths around 4 or 5 (i.e. a plausible length for a human 

window of experience as defined above).   

Experiment 

Participants first observed blocks of binary outcome random 

sequences following an unbiased Bernoulli process (p = 0.5) 

and were then instructed to generate random outputs to 

match the properties of the observed process.  

Method 

Participants. Twelve undergraduate students from the 

University of Manchester participated on a voluntary basis 

and gave informed consent. Participants received course 

credit as payment. There were no exclusion criteria.    

Materials. Participants were seated in front of a 19-inch 

LCD display. The experimental stimuli were presented 

using the Python programming language on a PC running 

Windows 7. Participants responded using a standard 

Windows keyboard.    

Design. We compared the statistical properties of sequences 

generated by a truly random Bernoulli process (p = 0.5) and 

those generated by our participants (N = 12) using four 

methods contrasting: 

i) the expected frequency of sub-sequence 

occurrences per block of length 20 

ii) the proportion of blocks of length 20 on which 

there was at least one sub-sequence occurrence. We 

call this the occurrence rate which is the 

complement of the non-occurrence probability 

described by Hahn & Warren (2009)  

iii) occurrence frequency histograms for three sub-

sequences of interest – perfect runs (e.g. 0000), 
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perfect alternations (e.g. 0101) and sequences such 

as (0001) which when compared to a perfect run of 

the same length has implications for the gambler’s 

fallacy phenomenon 

iv) boxplots illustrating medians and IQRs of 

occurrence frequency distributions for the three 

sub-sequences outlined in iii)  

Procedure. Participants were told they would first observe 

the output of a machine generating a random sequence of 

1’s and 0’s, and that they should attend to it (Presentation 

Phase) before going on to generate a sequence (Generation 

Phase). 

Presentation Phase:  Each digit (a 1 or 0) appeared on the 

screen for 250 msec before being replaced by the next digit 

in the sequence. The display of each digit was accompanied 

by a corresponding tone. The display was full screen with a 

black background. The digits were displayed in white in  80 

point Arial font in the centre of the screen. 1’s were 

accompanied by a 1200 hertz tone, and 0’s by an 800 hertz 

tone. After every 20 digits the sequence paused and 

participants were required to complete a distractor task. The 

distractor task consisted of counting the number of vowels 

in a list of 10 words. In total participants observed 600 

digits over 30 blocks of length 20. 

Generation Phase: Participants were asked to generate a 

new sequence representative of the one they had just 

observed in the Presentation Phase. They used the keyboard 

to press either 1 with their left hand, or 0 with their right 

hand. For each key press participants saw the appropriate 

digit on screen and heard the corresponding tone, exactly as 

in the presentation phase. As in the Presentation Phase, 

participants generated 600 digits in 30 blocks of 20 and the 

same distractor task was used in between each block.  

Analysis 

We counted sub-sequences using sliding windows of 

lengths k = 3 to k = 9 and for global sequence length n = 20. 

For illustration we describe the analysis and present results 

for k = 4. For each participant, and each of the 30 blocks of 

data collected, we slid a window of length k = 4 through the 

n = 20 outcomes generated. We then undertook 4 analyses 

of these sequences:  

Analysis 1 -  Over the 360 (12 observers x 30 blocks) 

length 20 sequences, we calculated the 

expected value of the participant-generated 

frequency distribution for each of the 16 

possible sub-sequences (0000, 0001,…,1111). 

For an unbiased random process the expected 

frequency of each sub-sequence should be 

1.0625 per sequence of length 20. 

Analysis 2 -  Over the 360 (12 observers x 30 blocks) 

length 20 sequences, we calculated the 

occurrence rate – i.e. the proportion that 

contained at least one occurrence for each of 

the 16 possible sub-sequences (0000, 0001, 

…, 1111). Even for a random process this 

metric will not be the same for all sub-

sequences since non-occurrence probabilities 

vary due to the sliding window analysis (see 

Hahn & Warren, 2009). 

Analysis 3 -  Over the 360 (12 observers x 30 blocks) 

length 20 sequences, we generated histograms 

illustrating the proportion of the 360 

sequences containing 0, 1, 2, etc… 

occurrences of the three sub-sequences 0000, 

0101, 0001. 

Analysis 4 -  Over the 360 (12 observers x 30 blocks) 

length 20 sequences, we generated boxplots 

illustrating the median and IQR of the 

distributions obtained in Analysis 3. 

We generated the same amount of simulated data as that 

obtained from human participants using an unbiased 

Bernoulli process (p = 0.5). We refer to these simulated 

sequences as theoretical participant-generated and their 

properties are analyzed in an identical manner to the human 

data. By repeatedly generating (N = 1000) theoretical 

participant data sets we were able to place confidence 

bounds on the metrics described in Analysis 1 and 2 for the 

theoretical participant.    

Results 

In Figure 1A the dots represent the observed expected 

values of human-generated sub-sequence frequencies 

(Analysis 1) at window length 4. The unbroken black lines 

represent the equivalent metric for the theoretical 

participant. The dotted lines represent the 95% confidence 

interval on the theoretical data. Note that the theoretical 

expected frequencies are the same across sub-sequences 

since in an unbiased random process all sub-sequences at all 

window lengths should be equally represented (e.g. see 

Beltrami, 1999). Although the majority of the human data 

lies within the confidence interval for the theoretical 

participant, there are some clear departures and there 

appears to be systematic over and under-representation of 

certain sub-sequences relative to the theoretical participant. 

This analysis illustrates the standard description of human 

random sequence generation as biased. Relative to the 

theoretical participant, the perfect runs are clearly under-

represented and 10 of the other 14 sub-sequences are over-

represented.  

Figure 1B shows the outcome of Analysis 2 for window 

length 4. The dots represent the occurrence rate – i.e. the 

proportion of the 360 blocks on which a sub-sequence 

occurred at least once – for human participants. 

Respectively, the solid black and dotted lines illustrate the 

equivalent occurrence rate and 95% confidence interval for 

the theoretical participant. Under this analysis the human 

and theoretical data share several common features, 

including a marked decrease in occurrence rate for perfect 

runs. In addition the human data appear to follow the 

fluctuations in the simulated data.  
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Figure 1: A. The results of Analysis 1 for sliding window length 4. Sub-sequence frequencies are presented for both human-

generated (dots) and theoretical observer-generated length 20 sequences. B. The results of Analysis 2 for sliding window 

length 4. Proportions of blocks containing at least one occurrence of the sub-sequence are presented for both human-

generated (dots) and theoretical observer-generated length 20 sequences 

 

As noted in Hahn & Warren (2010), although the non-

occurrence probability, or its complement the occurrence 

rate, is a convenient statistic with which to illustrate 

differences between sub-sequences it is not the only statistic 

for which differences emerge for an unbiased random 

process. In Analyses 3 and 4 we illustrate significant 

differences between the distributions, medians and modes of 

three key sub-sequences: 0000, 0001 and 0101 and show 

that based on these analyses human and theoretical data are 

in close agreement.   

In figure 2 we present the outcome of Analysis 3 for the 

theoretical (figure 2A) and human (figure 2B) participants. 

Note, that occurrence rates obtained in Analysis 2 for the 

three sub-sequences considered can also be seen in figure 2 

as the sum of all columns except that for frequency 0. 

Although there are some differences in the human vs. 

theoretical distributions they are primarily both qualitatively 

and quantitatively similar. Furthermore, the clear skew in 

the distributions of these data suggests that it is dangerous to 

use the expected value as a summary statistic (see Analysis 

1). To further reinforce this point we have indicated the 

observed expected values (vertical dashed lines in figure 2). 

Note that for the theoretical data the expected values are 

identical at 1.0625 – which is consistent with Analysis 1. On 

the other hand for the human data the expected values are 

markedly different – again consistent with analysis 1. For 

example, note that the significant reduction in human 

relative to theoretical expected value for the sub-sequence 

0000. However, this difference is largely driven by the fact 

that there are fewer high frequency sequences (e.g. beyond 

frequency 6) in the human data. These extreme values 

would contribute significantly to the expected value even 

though they are highly unlikely to be experienced. We 

suggest that placing emphasis on the difference in expected 

values between human and theoretical participants is 

problematic when there are similarities in the data generated 

on other (potentially more appropriate) statistics.  

In figure 3 we present another illustration of the data in 

figure 2. These boxplots emphasize the similarity in the 

median frequency for the humans and theoretical data. In 

addition, box plots for the 0001 and 0101 sub-sequences are 

very similar between human and theoretical participants. 

Similar to figure 2, for sub-sequence 0000 the increased 

tendency for the theoretical participant to generate high 

frequency sequences is also evident. As noted above, this 

tendency is responsible for the higher expected value for 

theoretical relative to human data. In addition we see that 

for an agent paying attention to the median statistic it would 

be true to say that sub-sequence 0001 is less likely to occur 

that 0000. It is possible that this plays a role in the 

gambler’s fallacy. 

Note that although we have focused exclusively on the 

analyses at window length k = 4 we have data for lengths 

from k = 3-9. We find that up to length 4 or 5 there is good 

correspondence between human and simulated data on 

Analyses 2, 3 & 4 but beyond this value the discrepancies 

are greatly increased.  

Discussion 

The purpose of the present study was to provide a 

preliminary test of the theoretical account of randomness 

perception put forward by Hahn & Warren (2009). In 

particular we wanted to go beyond the standard account 

which presents a picture of randomness perception as highly 

biased because the frequencies of human-generated sub-

sequences depart from those expected from a truly random 

process (figure 1A). Instead, we present a set of alternative 

analyses under which human performance is comparable to 

that of a random process. 

The key result here is that the correspondence between 

human and unbiased theoretical data depends on the 

statistics used to parameterize performance. We have 

presented several analyses that emphasize the similarities.  
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Figure 2: The results of Analysis 3 for sliding window length 4. Histograms describing proportion of blocks containing 

each frequency for three selected sub-sequences. Vertical dashed lines represent the expected values of the distributions. A. 

Data for theoretical participant (truncated at frequency 9). Note the expected values overlap (consistent with Analysis 1). B. 

Data for human observers.  

 

Moreover, the analyses conducted are sensible in that they 

reflect the manner in which we are likely to experience 

random events due to the constraints imposed on human 

cognition – i.e. as a sliding window moving one outcome at 

a time through a longer but finite sequence of unfolding 

events. 

The results presented re-emphasize the argument made in 

Hahn & Warren (2010) that the mean (expected value) is 

not an appropriate statistic to characterize the distribution of 

sub-sequences generated by either a human or theoretical 

participant under a sliding window analysis. The level of 

skew in the data is high and it is precisely for such 

distributions that the median and/or mode are preferable. As 

noted in Hahn & Warren (2010), it would seem problematic 

to conclude that average income was $100,000 per month in 

a population where most made $1000 and very few made 

$1,000,000. By the same logic, based on the distribution 

presented in figure 2, it is not sensible to suggest that one 

would expect to see (on average) about one instance of 

HHHH in 20 coin flips. In contrast the median (figure 3)  

and or/mode (figure 2) statistics are more meaningful, and, 

based on these statistics humans look rather well matched to 

the unbiased theoretical process. 

The fact that human and theoretical sequence generation 

processes share common features for Analyses 2-4 at 

window lengths 3-5 suggests that it is possible that on 

average  our participants were behaving similarly to the 

process described in Hahn & Warren (2009) with sliding 

window length around 4-5. In practice, individuals are likely 

to have different and possibly non-stationary sliding 

window lengths. If enough data is generated, it may be 

possible to establish a link between individual sequence 

statistics and a proxy measure of window length such as 

digit-span or short-term memory capacity. An investigation 

of this possibility will form the basis of future work.  

 In summary we provide experimental data that is 

consistent with the account put forward by Hahn & Warren 

(2009; 2010). We suggest that apparent biases in human
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Figure 3: The results of Analysis 4 for sliding window length 4. Boxplots illustrating medians IQRs and extreme values of 

the data illustrated in figure 2 for three selected sequences. A. Data for theoretical participant (truncated at frequency 6). B. 

Data for human observers.  

  

randomness perception should be re-evaluated and that it is 

problematic to suggest human behaviour is flawed simply 

because it departs from that of an unbiased theoretical 

process on a single metric which may not reflect cognitive 

and task constraints.  
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