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Abstract 

Patterns of object naming often differ between languages, but 
bilingual speakers develop convergent naming patterns in 
their two languages that are distinct from those of 
monolingual speakers of each language. This convergence 
appears to reflect dynamic interactions between lexical 
representations for the two languages. In this study, we 
present a self-organizing neural network model to simulate 
semantic convergence in the bilingual lexicon and investigate 
mechanisms underlying semantic convergence. Our results 
demonstrate that connections between two languages can be 
established through the simultaneous activations of related 
words in both languages, and these connections between two 
languages pull the two lexicons toward each other. These 
results suggest that connections between words in the 
bilingual lexicon play a major role in bilinguals’ semantic 
convergence. The model provides a foundation for exploring 
how various input variables will affect bilingual patterns of 
output. 

Keywords: object naming; lexical categories; modeling; self-
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Introduction 

The relationships between objects and names are not 

always consistent across languages. For example, objects 

labeled as table for English speakers are divided between 

two different words for Polish speakers (stolik for coffee 

tables and stól for dining room tables; Wierzbicka, 1992). In 

an early study, Kronenfeld, Armstrong, and Wilmoth (1985) 

asked speakers of English, Hebrew, and Japanese to sort 11 

drinking vessels into categories and found that (a) some 

objects that were called cup by American speakers (e.g., 

paper cup, plastic cup) were named by Hebrew speakers 

using cos, a word that more closely corresponds to English 

glass, and (b) Japanese speakers distinguished paper cups 

and metal cups with two different names, koppu and kappu, 

based on the material that makes the cup. Malt, Sloman, 

Gennari, Shi, and Wang (1999) further investigated lexical 

categories across languages by asking speakers of American 

English, Argentinean Spanish, and Mandarin Chinese to 

name 60 common household containers. They found that 

naming patterns differed substantially as a function of the 

language spoken. Malt, Sloman, and Gennari (2003) 

identified one-to-one, one-to-multiple, multiple-to-one, and 

cross-cutting relationships among the lexical categories of 

the three languages. 

These complex mapping relationships between objects 

and names pose a challenge for speakers of two languages. 

Malt and Sloman (2003) studied English naming of 

common household containers (e.g., plates, cups, utensils) 

by 68 non-native speakers of English. Even after many 

years of immersion in an English-language environment, the 

participants still showed different naming patterns from 

native English speakers. Ameel, Storms, Malt, and Sloman 

(2005) compared adult Dutch-French simultaneous 

bilinguals to monolingual Dutch and French speakers. They 

found that object naming patterns by the bilingual speakers 

converged toward a pattern that was different from the 

naming patterns of monolinguals of each language, 

suggesting that even simultaneous bilinguals do not behave 

like monolinguals in lexical categorization. Bilingual lexical 

representations reflect the convergence of two languages 

and are not simply the sum of two separate monolingual 

representations (Grosjean, 1989).  

Recent investigations have focused on further 

characterizing the nature of the lexical representations and 

the factors that drive the particular naming patterns that 

emerge. Malt, Li, Pavlenko, Zhu, and Ameel (2015) 

examined Chinese-English bilinguals who arrived in an 

English-speaking environment after age 15. They found that 

although the bilinguals’ naming patterns differed 

significantly from those of native English speakers, with 

increased second language usage, changes can occur to both 

L1 and L2 naming patterns. Their findings suggest that the 

lexical network remains plastic even in adulthood.  Zinszer, 

Malt, Ameel, and Li (2014) examined variables 

characterizing both language learners and the names given 

to individual objects to determine conditions under which 

second language learners show better or poorer mastery of 

the second language name choice for objects. One factor of 

interest was name agreement: the proportion of people who 

agree on a name for a particular object. Name agreement has 

been shown to have a significant impact on naming latency 
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(Kremin, Hamerel, Dordain, De Wilde, & Perrier, 2000), 

and lead to different profiles in event-related potential 

(Cheng, Schafer, & Akyürek, 2010) and fMRI response 

patterns (Kan & Thompson-Schill, 2004). Objects with high 

name agreement have stronger object-name associations and 

more robust representations. The same object could have a 

different degree of name agreement across languages and 

result in different level of robustness and entrenchment. 

Zinszer et al. found that the name agreement level in both 

the first and second language plays an important role in L2 

naming patterns. Learner characteristics such as age of 

immersion also mattered, suggesting complex dynamic 

interactions underlying the acquisition of L2 patterns in 

object naming.  

The study of the dynamic interactions in a lexical network 

lends itself naturally to connectionist representation and 

computational modeling. We can think of the lexical 

network in terms of a conceptual representation that 

includes features, exemplars, and associations rather than 

unitary concept nodes in a connectionist network. Influences 

of one language on the other can be thought of in terms of 

the connection weights that hold between features of the 

word meaning and the word form. When a new L2 word 

form is taught as a translation equivalent of an L1 word, the 

network will set initial weights to match those of the L1 

word. The L2 word will be activated by the same features as 

the L1 word, and non-native L2 patterns of production will 

result. Over time, however, these weights will be modified 

by L2 experience and will move away from a uniform 

pattern driven by L1. The weights may settle into a pattern 

that is the convergence of L1 and L2.  

Previous studies implementing a computational model to 

test lexical categorization in L1 and L2 object naming have 

been models of an individual at fixed state of learned 

representation. To capture phenomena such as lexical 

interaction, a model is needed that allows manipulating 

learning conditions longitudinally. With such a model, it 

will ultimately be possible to identify how important learner 

characteristics such as age of exposure and proficiency in 

each language affect output, as well as lexical input 

variables such as frequency of input and similarities 

between the lexical items. It will also be possible to 

examine both the learning trajectory and the mature state, 

and to see how behavior changes with shifts in the relative 

degree of first and second language use. 
In this study, we build a model based on self-organizing 

maps (SOM) to study cross-language lexical interaction. By 

building and testing this computational model against 

existing data of Ameel et al., this work will provide the 

foundation for further modeling studies manipulating 

variables such as those just mentioned.  SOM is a type of 

unsupervised learning that extracts and represents input 

similarities (Kohonen, 2001). It achieves this by projecting 

the complex stimulus representations from a high-

dimensional space onto a two-dimensional space while 

preserving their topographical structure. Because of this 

dimensionality-reduction ability, SOM is also a powerful 

tool to visualize the complex stimulus relationships in a 2D 

space. Past studies have applied SOMs successfully to 

model child lexical development and to simulate bilingual 

language processing (see Li & Zhao, 2013 for a recent 

review). As a first connectionist model of L1-L2 lexical 

categorization, the goal of the present study is to identify the 

computational mechanisms underlying bilingual lexical 

semantic convergence.  

Method  

Model Architecture  

Figure 1 presents a diagrammatic sketch of our model. The 

model is a multi-layer SOM network, which includes three 

basic SOMs (i.e., semantic, phonological, and 

orthographic). As in the standard SOM architecture 

(Kohonen, 2001), for each input stimulus, the SOM 

identifies a node that is most similar to the input vector as 

the Best Matching Unit (BMU), and adjusts the weights of 

the BMU so that over time, it can best represent the input. In 

addition to adjusting the weights of the BMU, the model 

also adjusts the weights of the BMU’s neighbors using a 

Gaussian kernel. As training progresses, the weight vectors 

of the BMU and its neighboring nodes become more similar 

to the input vector. As a result, similar input vectors activate 

nodes that are located near one another on the SOMs. All 

SOMs were implemented on a two-dimensional square grid 

(Kohonen, 1982) and composed of 30 × 40 nodes. Each 

node on the grid consists of a high-dimensional weight 

vector. In our model, the number of dimensions is based on 

an input structure defined by empirical data (see Stimuli). 

The three SOMs are connected via associative links updated 

by bi-directional Hebbian learning (Hebb, 1949). The three 

Figure 1: The model is composed of three self-organizing 

maps. The connection weights between SOMs were 

through Hebbian learning. 
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SOMs were shared between two languages. The associative 

links between SOMs were distinct for each language. 

In addition to the basic SOM architecture, we added 

lateral connections (see Sirosh & Miikkulainen, 1994) 

between languages in the model to simulate between-

language interactions. The lateral connections are 

implemented with the nodes that are fully connected with 

each other. The connection weights are updated via the 

Hebbian learning rule. Lateral connections have been shown 

to play an important role in the neocortex, and 

computational models of the primary visual cortex have 

relied on lateral connections (Sirosh & Miikkulainen, 1994). 

Zhao and Li (2013) also used lateral connections 

successfully to simulate a cross-language priming effects, 

and Shook and Marian (2013) used lateral connections to 

simulate competition between languages in speech 

comprehension. Many studies have shown that phonological 

representations from both languages may be activated when 

bilinguals read in only one language, due to parallel 

bilingual lexical activation (Dijkstra, Grainger, & van 

Heuven, 1999). Through lateral connections, lexical items 

across the two languages can be linked to enter into 

cooperation or competition regardless of physical distance. 

In our model we assume that when an object is presented to 

the semantic SOM, names of both languages will be 

activated on phonological SOMs through Hebbian 

connections, and the lateral connection between them is 

then strengthened via the Hebbian learning rule. As a result, 

object naming in the model in either L1 or L2 can be 

influenced by both languages through lateral connections. 

Stimuli 

As a starting point we used the monolingual naming data 

from Ameel et al. (2005) as the basis of input to the model. 

We trained the model on representations of pictures of 73 

bottle-like objects that are typically named as bottle, jar, or 

container in American English or else to have one or more 

salient properties in common with objects called by those 

names. In Ameel et al.’s study, the objects were 

photographed in color against a neutral background with a 

ruler included in front of each object to provide additional 

size information. Figure 2 (adapted from Ameel et al., 2005) 

provided 4 example pictures, which are usually named as 

fles, bus, pot, and brik by Dutch monolinguals (Ameel et al., 

2005). 

The semantic SOM was trained using input vectors with 

weighted object features. These features are derived from 

participants’ judgments of the object features (e.g., “it is 

made of glass”; “it is deep and you can put something in 

it”). The phonological SOM was trained using vectors 

generated from PatPho, a generic phonological pattern 

generator for neural networks (Li & MacWhinney, 2002). 

The phonological forms of words were represented as 

sequences of phonemes, obtained from dictionaries of the 

two target languages (New Routledge Dutch Dictionary, 

2003, for Dutch; The Oxford-Hachette French Dictionary. 

2001, for French). The orthographic SOM was trained using 

vectors that are based on the pixel patterns of the images of 

the alphabets in a word (see Mikkulainen, 1997, for a 

similar method). Each Dutch and French alphabet (the 26 

alphabets and è, é, & î) was typed in 12 point, Arial font in 

black on a while background measuring 90 × 90 pixels. 

Each alphabetic image was divided into 9 cells (3-by-3, 

each cell has 900 pixels). The proportion of black pixels in 

each cell (i.e., number of black pixels / 900) was then 

calculated and used to create a 9-dimension vector for each 

letter within a word. 

Training  

Figure 3 presents the training timeline of the model: (1) the 

semantic and phonological SOMs independently (without 

the orthographic SOM) to simulate the learning of the 

properties of objects and the pronunciation of words;  (2) 

Hebbian learning started after 50 epochs, which enabled the 

learning of the association between object features and 

phonological forms; the orthographic SOM also started at 

the 50th epoch to simulate the learning of written words; 

and (3) Hebbian learning between the semantic and 

orthographic SOMs and between the phonological and 

orthographic SOMs began at epoch 100, to simulate the 

learning to read process.   

 

 

 

 

 

 

 

 

Figure 2: Examples of fles, bus, pot, and brik (pictures 

from 1 to 4 respectively) for Dutch monolinguals. Adapted 

from Ameel et al. (2005). 

Figure 3: Schematic representation of the training timeline. S-

SOM: semantic SOM. P-SOM: phonological SOM. O-SOM: 

orthography SOM. S-P Hebbian: Hebbian connections 

between semantic SOM and phonological SOM. S-O 

Hebbian: Hebbian connections between semantic SOM and 

Orthography SOM. P-O Hebbian: Hebbian connections 

between phonological SOM and Orthography SOM. 
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The training order of each stimulus was randomly assigned. 

During training, the learning rate of the SOM, following 

previous practice, was linearly decreased from 0.2 to 0.1 

during the first 100 epochs and it remained at 0.1 for the rest 

of the training. The learning rate for Hebbian learning was 

set at 0.2. The initial radius of the neighborhood size was set 

at 15, and was adjusted according to the network’s learning 

outcome. We used a self-adjustable neighborhood function 

according to Li, Zhao and MacWhinney (2007). 

The Hebbian connections between semantic and 

phonological SOMs within each language (Dutch or French) 

were based on the monolingual naming data from Ameel et 

al. (2005), which were also scaled according to the name 

agreement scores. For example, if an object was named 

81.25% as fles and 18.75% as bus in Dutch, the adjusted 

connection weights were rescaled by 81.25% for fles and 

18.75% for bus. To avoid uncontrolled weight growth, a 

multiplicative normalization was applied to the associative 

weight vectors to ensure that the largest possible connection 

weight is no more than one (Miller & MacKey, 1994). 

Assessment of the model  

We tested each model at epoch 500. During testing, we 

presented all 73 bottle-like objects to the semantic SOM and 

examined their activations propagating to the phonological 

SOM (simulating the name production process). In order to 

distinguish specific language output (i.e., whether the name 

given was Dutch or French), we labeled the phonological 

BMUs by their language memberships in this process and 

only examined the output of the to-be-named language in 

the analysis. 

      We conducted three analyses to evaluate model’s  

naming patterns, following the methods used in the 

empirical studies of lexical categorization in Ameel et al. 

(2005; 2008) and Malt et al. (1999). In the first analysis, we 

used the correlation of the name distributions for each 

object based on the model’s naming patterns in different 

languages. The correlation indicates the extent to which the 

same object would elicit same or similar name distributions 

in each language (Ameel et al., 2005; Malt et al., 1999). For 

this analysis, in the first step, we constructed the name 

distribution for each object. The name distribution consists 

of a vector of numbers to indicate the number of times a 

given name was produced for each object. For example, for 

one object, 11 participants called it fles, 10 called it flacon 

and 4 called it pot, and none called it by any other name. 

This would lead to a vector in which the dimensions for fles, 

flacon, and pot are filled with values 11, 10, 4, respectively, 

with all other dimensions as 0s. In the second step, given the 

name distribution as calculated, we can compute the 

similarity of objects with regard to name distributions 

within each language, by calculating pairwise Pearson 

correlations for each object against every other object. There 

are n(n-1)/2 correlations, and thus 2628 correlations for 73 

bottle-like objects. We can then correlate these name 

similarity values between two language groups. In the last 

step, the correlations of name distributions were converted 

to Z-values using Fisher’s r-to-z transformation to 

normalize the sampling distribution of the correlations.  

In order to estimate the correspondence between 

simulation and empirical data, we conducted two further 

analyses to directly compare the outputs from simulations 

and the empirical data. Specifically, we used the 

correlations of name distributions for each object to 

compare the naming patterns from the empirical data and 

the simulation data. For each language group (monolingual 

Dutch, monolingual French, bilingual Dutch-French), we 

correlated the name similarity values (i.e., the correlation 

matrices between object pairs within each language group) 

between the empirical data and the simulation data. 

Moreover, we compared the dominant category names for 

each object between our simulations and the empirical data 

from Ameel et al. (2005). Finally, to identify the effect of 

lateral connections, we also constructed a model in which 

there are no lateral connections between languages.  

4(A) 

4(B) 

Figure 4: Patterns of correlations between the name 

distributions of the language groups. Dutchmonolingual denotes 

the naming pattern of the Dutch-speaking monolinguals, 

Frenchmonolingual the naming pattern of the French-speaking 

monolinguals, Dutchbibilngual and Frenchbilingual the Dutch 

and French naming pattern of the bilinguals. (4A) the 

correlation reported from Figure 5D in Ameel et al. (2005). 

(4B) the correlation from our model.  The circles represent 

the naming patterns. The lines between the circles express 

the relations between the naming patterns. The numbers 

next to the lines show the correlation coefficient between 

the naming patterns.  
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Results 

Before reporting our simulation results, we briefly 

summarize the empirical findings from Ameel et al. (2005). 

Ameel et al. reported the correlations of the name 

distributions between monolingual and bilingual language 

groups as shown in Figure 4(A) (adapted from Figure 5D in 

Ameel et al., 2005). There are four circles in the figure, one 

for each language of a language group (naming in Dutch by 

Dutch monolinguals, naming in French by French 

monolinguals, and naming in Dutch by the bilinguals, and 

naming in French by the bilinguals). The figure indicates 

that the correlation between two bilingual circles is higher 

than the correlation between the two monolingual circles 

showing that bilinguals arrive at a convergent pattern in 

object naming, distinct from monolinguals in each language.  

For the first analysis, the correlations between language 

groups are presented in Figure 4(B). Similar to Ameel et al. 

(2005), our computational model shows higher correlation 

between bilinguals’ two languages (0.97) than between two 

monolingual languages (0.63), indicating that our model 

simulated convergence naming patterns and captured this 

aspect of bilinguals’ lexical categorization. 

    In the second analysis, we compared the empirical and 

simulated name distributions, and found that the model that 

incorporated lateral connections has higher correlations with 

the empirical data than the model in which there was no 

lateral connection mechanism: t(38) = 14.02, p < .001 for 

Dutch, t(38) = 13.35, p < .001 for French. We also 

compared the dominant names produced by the model with 

the empirical data from Ameel et al. (2005). We identified 

that averaged across 20 individual simulations, there were 

93.22% and 92.26% dominant names that were matched in 

Dutch and French. The model without lateral connections 

showed 82.95% and 86.03% dominant name match in Dutch 

and French. Thus, the model with lateral connections 

performed significantly better than the model without lateral 

connections (t(38) = 18.29, p < .001 for Dutch; t(38) = 

10.47, p < .001 for French).  

We further examined the model to explore what properties 

in the model might have influenced the naming patterns. For 

each object, its name could be determined by two sources: 

(1) activation from the to-be-named language; (2) cross-

activation from the other language. The level of activation is 

proportional to the strength of name agreement. In the 

empirical study, name agreement is reflected as the 

likelihood of a name for an object. The naming pattern was 

considered as the sum of both of these two sources of 

activation. Our model shows that if an object elicited a 

strong level of activation for a word in the to-be-named 

language, the output name of the model for bilingual 

naming will be the same as the name for monolingual 

naming. However, if the activation level is weak in the to-

be-named language and the cross-activation from the other 

language is strong, the output names of the model could be 

different between bilingual naming and monolingual 

naming. For example, if a bottle-like object elicited strong 

activation of the word fles in Dutch, both the monolinguals 

and bilinguals will produce fles in Dutch; whereas if the 

activation of fles in Dutch is weak, the activation of bus in 

Dutch may outperform fles, due to a combination of its 

original activation from Dutch and the strong lateral 

activation from French. In this example, the monolinguals 

will produce fles, but the bilinguals will produce bus. 

Discussion 

In this study, we successfully built a bilingual lexical 

categorization model based on a connectionist SOM 

architecture that has been previously tested in other domains 

of language acquisition and bilingual processing. Our model 

simulated bilingual semantic convergence in the naming of 

common household objects as reported in the empirical 

literature (Ameel et al., 2005).  

Our simulation also showed that the strength of name 

agreement is an important factor to determine lexical 

naming patterns for bilinguals. If the object has high name 

agreement in one language, the influence from the other 

language through lateral connection cannot easily change its 

name and vice versa. Such changes can occur only if the 

influence from other language is very strong. This is 

consistent with Zinser et al. (2014) who found that the level 

of agreement can predict the native-likeness of responses. 

Furthermore, our model suggested that the relatioship 

between the two languages in the levels of name agreement 

are competition and cooperation, as reflected in the 

associative mapping between languages. 

Our model with additional lateral connections also 

performed significantly better than the model in which 

lateral connections are not included. This is particularly 

important as our model is designed to simulate the dynamic 

interactions between two languages, and lateral connections 

play a critical role in bilingual lexical categorization, 

consistent with findings from Zhao and Li (2013).  Our 

results demonstrate how, for simultaneous bilinguals, the 

processing of one language can be influenced by the other 

language (i.e., bi-directional influences between languages).  

The viability of our model paves the way to use modeling to 

study a wide range of learner and object name variables that 

may influence behavioral outcomes for simultaneous and 

sequential bilinguals (such as variables discussed before, 

including age of onset, proficiency, and frequency of input).  

Our simulations also provide a mechanistic account for 

the idea of retrieval-induced reconsolidation as applied to 

cross-language lexical interaction, as proposed by Wolff and 

Ventura (2009). The idea of retrieval-induced 

reconsolidation originated from memory research (Alberini, 

2005) in which consolidated memories become labile and 

vulnerable to change when they are re-activated through 

retrieval. During this vulnerable period, other active 

information can alter or modulate the original memory. 

Eventually, the activated memory will re-stabilize through 

reconsolidation, but it may be different from the original 

memory. Wolff and Ventura suggested that processing of 

one language is affected by the other language when the one 

language is activated in the labile stage. Our simulation is 
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consistent with this hypothesis and provides a concrete 

instantiation of such an idea. When an object activates 

names in both languages, the connections between two 

languages begin to be established.  

Conclusion 

This study used a connectionist self-organizing model to 

simulate object naming patterns in bilinguals and to identify 

mechanisms of lexical semantic convergence. We 

successfully replicated the lexical convergence patterns 

reported in empirical data from Ameel et al. (2005), and we 

further investigated the mechanisms and important factors 

that modulate bilinguals’ naming categorization. We 

demonstrated that lateral connections play an important role 

in lexical convergence. Finally, we have identified the role 

of name agreement strength on bilinguals’ object naming. 

This study provides a first computational model that 

examines the dynamic interaction between two lexicons in 

the process of naming objects in monolingual or bilingual 

language contexts.   
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