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Abstract

Recent brain imaging studies have provided new insight into
how students are able to extend their previous problem solving
skills to new but similar problems. It is still unclear, however,
what the basis is of individual differences in their success at
transfer. In this study, 75 subjects had been trained to solve
a set of mathematical problems before they were put into the
fMRI scanner, where they were challenged to solve modified
versions of familiar problems. A hidden semi-Markov model
identified the sequential structure of thought when solving the
problems. Analyzing the patterns of brain activity over the se-
quence of states identified by the model, we observed that sub-
jects who showed consistent brain patterns performed better.
This consistency refers to both how consistently subjects re-
spond to different problems (within-subject consistency), and
how brain responses of a given subject deviate from the pop-
ulation average (between-subjects consistency). Early within-
subject consistency is particularly predictive of later perfor-
mance in the experiment.
Keywords: Transfer of learning; Mathematical problem-
solving; Individual differences; Hidden semi-Markov model

Introduction
While sometimes the learners are skilled only at a task being
taught, in many cases they are expected to transfer what they
have learned to new situations. It is the fundamental assump-
tion in education that what is learned will apply in similar but
possibly different situations (Leberman, McDonald, & Doyle,
2006). A specific setting that has raised considerable interest
is the transfer of learning during mathematical problem solv-
ing. For decades, various methods have been used to shed
light on the underlying thought processes during complex
mathematical problem solving. Such efforts include proto-
col analysis and eye movements (Epelboim & Suppes, 2001).
Functional Magnetic Resonance Imaging (fMRI) has become
a powerful instrument to collect vast quantities of data on
brain activity. We have developed a new procedure that com-
bines multi-voxel pattern analysis (MVPA) (Norman, Polyn,
Detre, & Haxby, 2006) and hidden Markov model (HMM) al-
gorithms (Rabiner, 1989) to better analyze the temporal pat-
terns in the brain (Anderson, Betts, Ferris, & Fincham, 2010).
This method is particularly effective in mathematical problem
solving, where there is a rich mixture of perceptual, cognitive
and motor activities each with distinct temporal characteris-
tics. Given the great variability in problem-solving duration
of such problems, we have used a hidden semi-Markov model
to identify the sequential structure and durations of the prob-
lem solving process.

In recent years, brain imaging studies have informed us
about the neural basis and mechanisms underlying transfer of
learning (Ischebeck, Zamarian, Schocke, & Delazer, 2009)
(Anderson & Fincham, 2014b). However, there remains an

open question: what are the sources of individual differences
in successful transfer? This question is the focus of our study.
In our experiments, subjects were trained in a mathematical
problem-solving task before they were scanned. In the fMRI
sections of the experiments, they encountered both Regular
problems that were like those they had solved, as well as
novel Exception problems that required subjects to devise
modifications or partial replacements to their learned proce-
dure.

Methods
Experiments
Our research uses pyramid problems, which involve a mathe-
matical relationship denoted by a dollar symbol as the opera-
tor, e.g., 4$3 = X. Here, 4 is the base, which is also the first
term in an additive sequence; 3 is the height, which indicates
the number of terms to add in a descending manner, e.g. 4$3 =
4 + 3 + 2. This is an example of a “Regular” problem. There
are “Exception” problems that either have unusual numbers
for operands, e.g. 4$-3=X, or have unusual algorithm such
as having X as one of the operands, e.g. X$4 = 30. Solv-
ing Exception problems involves modifying the procedure for
Regular problems. The exact problems and procedural details
are described in the original report (Anderson & Fincham,
2014a). fMRI data were collected from 40 adults (ages 19-
35), and 35 children (ages 12-14). Subjects practiced solving
a large number of Regular problems outside the scanner, and
were tested on the second day in an fMRI scanner with a mix-
ture of Exception problems and Regular problems. Each sub-
ject solved six blocks of problems with each block consisting
of two Regular problems and nine Exception problems. Im-
ages were acquired using gradient echo-echo planar image
(EPI) acquisition on a 3T Verio, then motion corrected and
co-registered. Blood-oxygenation-level dependent (BOLD)
signal response is calculated as the percent change from a
linear baseline defined by the first scan. This is deconvolved
with a hemodynamic response function to produce an esti-
mate of the underlying activity signal using a Wiener filter
(Glover, 1999). The hemodynamic function is the difference
of two gamma bases (Friston, 2007).

Dimensionality Reduction
To reduce the dimensionality of the data and to accommo-
date variations in anatomy over subjects, the original image
voxels (3.125 x 3.125 x 3.2 mm) were aggregated into larger
2x2x1 voxels within the same slice. Removing those show-
ing extreme values resulted in 8365 voxels. To further reduce
the dimensionality of the 8365 voxels, principal component
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analysis was performed with 67% of the variance captured by
the first 20 components that we eventually worked with. In
addition, we examined the BOLD brain activations of the 12
key regions of interest (ROIs) averaged over the left side and
the right side of the brain.

Discovering Mental States
Hidden Markov models (HMM) have been successfully
used in modeling and analyzing complex behavioral and
neurophysiological data (Obermaier, Guger, Neuper, &
Pfurtscheller, 2001). They make inference of unobserved pa-
rameters possible while taking into account the probabilistic
nature of behavior and brain activity. We conceive the sub-
jects as going through a sequence of mental states in the pyra-
mid experiments. The discrete mental states are hidden in the
sense that we only observe the brain activity, not the men-
tal states themselves. The effectiveness of HMMs in model-
ing such an experiment has already been demonstrated in a
previous study, where three ground-truth stages of fixation,
problem solving, and feedback could be recovered accurately
on a single-trial basis (Anderson & Fincham, 2014a). Four
states were identified as the optimal number in the previous
study with the same experiment through leave-one-out cross-
validation (LOOCV). They were characterized as an encod-
ing stage, a planning stage, a solving stage, and a respond-
ing stage, given their brain signatures (Anderson & Fincham,
2014a).

Model Specification. A specific extension of HMM,
a hidden semi-Markov model (HSMM), is used to model
explicitly the state duration as a gamma distribution that
provides a realistic characterization of response latencies
(Wainer & Messick, 1983). The state duration is discretized
to the nearest scan. The probability of spending m scans in
state i given the length of each scan being 2 seconds is:

P(m;vi,ai) =
∫ 2m+1

2m−1
g(t;vi,ai)dt,

where g(t;vi,ai) is the gamma distribution with shape param-
eter vi and scale parameter ai. The fMRI activity considered
in the model are the first 20 components obtained from princi-
pal component analysis over all scans in the experiment. They
are further normalized to have mean 0 and standard deviation
1. The brain activity of the kth PCA component for each state
i is modeled as a normal distribution N(x;µik,1) with mean
µik and standard deviation 1. The probability of observing a
set of PCA components Fj = { f j1, f j2, .., f j20} for a particular
scan j, at state i, is calculated as:

P(Fj;Mi) =
20

∏
k=1

N( f jk;µik,1),

where Mi = {µi1,µi2, ..,µi20}. We have a left-right HSMM
that encodes a linear sequence of four mental states. The im-
plementation that we adapted is from the software developed
by Yu and Kobayashi (Yu & Kobayashi, 2006).
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Figure 1: An illustration of how to obtain state-specific brain ac-
tivations for each of the 4 states in a single trial for different brain
regions, i = 1,2,3,4. (a) shows the brain activations for each scan for
representative brain regions in one trial. (b) shows the state occu-
pancies estimated from the HSMM of that trial. (c) shows the state-
specific brain activations calculated from weighted sums for each
region in (a). (d) shows the linear structure of the HSMM model.
Each vertical line in (a) and (b) represents an fMRI scan.

Trial-alignment By States. Modeling with an HSMM
not only uncovers sequential stages of problem solving, but
also serves as an effective way to align fMRI data on a trial-
by-trial basis. Conventionally, trials would be aligned to a
fixed time point, either the stimulus or the response. How-
ever, because different processes will occur at the same time
on different trials, the average signal can be uninformative
(Gibbons & Stahl, 2007; Velazquez & Wennberg, 2009). In
our analysis, after fitting all trials to the HSMM, state occu-
pancies for each scan p(qt = i) can be obtained. They are the
probabilities that each scan belongs to each of the four states,
where qt is the state at time t, and i = 1,2,3,4. As is illustrated
in Figure 1, brain activations for each scan are converted to
brain activations for each state through a sum weighted by the
state occupancies. These state-specific brain activations will
be used throughout our analysis.

Approach
Our study is an exploratory analysis that attempts to answer
the question: what contributes to individual differences in
transfer-of-learning performance? Past research has found
that the extent to which subjects are able to relate the cur-
rent task to the appropriate past experiences contributes to
success in transfer tasks (Ross, 1984). One hypothesis is that
this facilitates taking a consistent approach to the problems.
Our current study will examine whether there is evidence for
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the importance of consistency at the brain level. We start
our investigation of this question by characterizing what is
meant by brain consistency. This consistency can be under-
stood from two perspectives. It can be measured as the agree-
ment in brain activation patterns amongst different problems
in an experiment for a given subject (within-subject consis-
tency). It can also be measured as the agreement in brain
activation patterns from a given subject with the rest of the
subjects (between-subjects consistency). These brain consis-
tencies are first explored on a set of pre-defined regions of
interest (ROIs), and then tested at the whole-brain level on a
set of selected brain voxels.

Results
The Pre-defined Brain Regions
A set of pre-defined brain regions of interest (ROIs) have been
observed to play an important role in the complex problem
solving in our laboratory. Eight of these are long-standing re-
gions in ACT-R cognitive modeling (Anderson et al., 2004):
the fusiform gyrus (Talairach coordinates of the ROI center:
-42, 60, -9), the secondary auditory area (-46, 22, 9), the cau-
date nucleus (-14, -10, 7), the lateral inferior prefrontal cor-
tex (-43, -23, 24), the posterior parietal cortex (-23, 63, 40),
the anterior cingulate cortex (-6, -10, 39), the manual por-
tion of the motor-sensory region (-42, 19, 50), and the facial
portion of the motor-sensory region (-43, 13, 33). Recently,
Anderson and Fincham defined a new metacognitive module
in ACT-R that involves the rostrolateral prefrontal cortex (-
33, -47, 8) (Anderson & Fincham, 2014b). We will also use
an additional three regions identified by Dehaene as impor-
tant to mathematical cognition: the horizontal segment of the
intraparietal sulcus (-34, 49, 45), the angular gyrus (-42, 65,
37), and the posterior superior parietal lobule (-19, 68, 54)
(Dehaene, Piazza, Pinel, & Cohen, 2003).

We investigated how the consistency in a subject’s acti-
vation in this set of 12 ROIs predicted subject performance.
Subject performance is measured as the proportion of prob-
lems one solves correctly during the entire experiment, rather
than response time (10.88s per problem on average). This
consistency can be measured within each subject as the av-
eraged correlation between every pair of problems across the
12 ROIs (within-subject consistency), reflecting how consis-
tently one subject responds to different problems. It can also
be measured as the correlation between the subject mean and
the population mean across the 12 ROIs (between-subjects
consistency), reflecting how consistently one subject solves
problems compared with the rest of the subjects. To avoid any
confounding of our measures with accuracy we only looked
at correlations among correct problems. Although adults
(78.71%) perform better than children (62.16%), the results
do not substantially change if analyzed separately. A dataset
of this size, with two populations pooled together, provides a
basis for application of the HMM state-discovery procedures.

Better subjects exhibit a higher level of brain consisten-
cies. The 75 subjects can be divided into two groups based

on their performance: 38 better subjects (85.28%) and 37
weaker subjects (56.31%). Analysis focuses on the early
stage (the first 10), the late stage (the last 10), or the entire
experiment (all). Figure 2 shows the within-subject consis-
tencies for the two groups of subjects calculated separately
for each state during the early stage and the late stage of the
experiment. Analysis of variance (ANOVA) was performed
on these brain consistencies where the factors were group
(better vs. weaker), period (first 10 versus last 10), and state
(encode, plan, solve, respond). There are significant effects
of all three factors (group: F(1,73) = 18.45, p < .0001), pe-
riod: F(1,73) = 24.69, p < .0001), and state: F(3,219) =
52.09, p < .0001), such that brain consistencies are greater
for better subject, later states, and the first 10 problems.
There is a marginal interaction between group and period
(F(1,73) = 3.41, p = .069), such that the difference between
better and weaker subjects decreases from the first 10 prob-
lems to a smaller difference for the last 10 problems (Figure
2).
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Figure 2: Brain consistency (within-subject) for the better subjects
and the weaker subjects during the first 10 correctly solved problems
(Top) and the last 10 correctly solved problems (Bottom). Error bars
show the 95% confidence interval of the population means.

To further quantify the relation at the level of individ-
ual difference, a second level of correlation is carried out
between within-subject brain consistency (average correla-
tion) and subject overall performance. The larger the val-
ues are, the more correlated the measure of consistency with
the subject performance. Brain activations in this analysis
are obtained with respect to each of the four states - Encode,
Plan, Solve and Respond. In our analysis, Pearson’s Correla-
tion Coefficient of larger than 0.227 is considered significant
(p < 0.05) under two-tailed probabilities with a sample of
size of 75 (df = 73). As is shown in Table 1, there is sig-
nificant correlation between within-subject brain consistency
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and subject overall performance for most of the states. This
effect is stronger for the first 10 correctly solved problems
than the last 10 correctly solved problems. The same effect is
also observed over the entire experiment, when analyzing all
correctly solved problems.

Table 1: Pearson correlations between subject performance and the
within-subject brain consistency among either the first 10 correctly
solved trials, the last 10 correctly solved trials, or for all correctly
solved trials, for each of the four states. p-value is indicated below
each value of correlation. Significant (p < 0.05, two-tailed) correla-
tions are in bold.

States Encode Plan Solve Respond
First 10 0.420 0.582 0.568 0.512

< 0.0001 < 0.0001 < 0.0001 < 0.0001
Last 10 0.163 0.313 0.346 0.351

0.16 0.0062 0.0024 0.002
All 0.285 0.439 0.461 0.441

0.013 < 0.0001 < 0.0001 < 0.0001

There is also significant correlation between between-
subjects consistency and subject overall performance as
shown in Table 2 analyzed in a similar manner as that of the
within-subject consistency. Analysis of variance (ANOVA)
was performed on these brain consistencies where the fac-
tors were group (better vs. weaker), period (first 10 versus
last 10), and state (encode, plan, solve, respond). Again there
are significant effects of all three factors (group: F(1,73) =
13.58, p < .0001), period: F(1,73) = 23.06, p < .0001), and
state: F(3,219) = 40.43, p < .0001).

Table 2: Pearson correlations between subject performance and
between-subjects brain consistency among either the first 10 cor-
rectly solved trials, the last 10 correctly solved trials, or for all cor-
rectly solved trials, for each of the four states. p-value is indicated
below each value of correlation. Significant (p < 0.05, two-tailed)
correlations are in bold.

States Encode Plan Solve Respond
First 10 0.230 0.314 0.314 0.317

0.047 0.0061 0.0061 0.0056
Last 10 0.267 0.377 0.353 0.164

0.021 0.00086 0.0019 0.16
All 0.327 0.382 0.389 0.274

0.0041 0.00072 0.00056 0.017

The effect of between-subjects consistency reveals that bet-
ter subjects deviate less from the global average. This ob-
servation relates to a study of the Space Fortress task where
the similarity to a global definition of mental stages obtained
from all the subjects can classify the mental stages of a par-
ticular scan for individual subjects (Anderson, Bothell, Fin-
cham, & Moon, 2014). We will focus for the rest of the study

on the examination of the within-subject consistency whose
effect is stronger as illustrated in Table 1, and argue that this
effect arises specifically from the transfer task.

Extending the problem solving procedure from a familiar
problem to a new one is a challenging task. Subjects were
trained on the Regular problems before going into the scanner
and having to transfer this knowledge to Exception problems.
At the beginning of the last century, Thorndike and Wood-
worth proposed that the amount of transfer depends on how
many shared elements there are between the learned tasks and
the transfer tasks, which is now widely known as the the-
ory of Identical Elements (Thorndike & Woodworth, 1901).
This theory was later refined by Gick and Holyoak, when
they brought out the concept of perceived similarity (Gick &
Holyoak, 1987). Perceived similarity depends on not only the
objective number of shared elements, but also the knowledge
or expertise of the person performing the transfer task. The
more a subject can relate the current transfer tasks to the past
learned tasks, and perceive them similarly, the more transfer
will take place (Gick & Holyoak, 1987).

In our pyramid experiment, although every subject was
presented with the same set of problems, these problems
might be perceived very differently. It is likely that the con-
sistency at the neural level in our correlation analysis reflects
how similarly the set of new problems appear to the sub-
jects, compared with the trained problems. The more one
finds the new and modified problems similar to the trained
ones, the more one is able to use knowledge about having
solved the trained problems. The perceived similarity has
also been identified in the analogy literature as whether an
abstract shared structure is learned, with various areas in pre-
frontal cortex (PFC) postulated to be responsible for enabling
analogy (Geake & Hansen, 2005; Green, Fugelsang, Krae-
mer, Shamosh, & Dunbar, 2006; Bunge, Wendelken, Badre,
& Wagner, 2005). Instead of examining only the BOLD re-
sponse in a single region at a single time, we looked into
pairwise correlations among problem pairs across a network
of brain regions at different points of problem solving, to
explicitly define the perceived similarity at the neural level.
Aly& Turke-Brown have recently used a similar correlation
approach to show that better memory performance is pre-
dicted with attention-stabilized activation patterns in the hip-
pocampus (Aly & Turk-Browne, 2015).
Early consistency is predictive of the overall performance.
To see how well we could use this within-subject brain con-
sistency for prediction we used a Leave-one-subject-out cross
validation (LOOCV) procedure. In particular, the perfor-
mance of an unseen subject is predicted by weights trained
from the rest of the subjects using multiple regression anal-
ysis with Least Squares Fitting. The four independent vari-
ables (predictors) here are the measures of consistency among
the first 10 correctly solved problems for each of the four
states. The dependent variable (what we are predicting) is the
subject performance, measured as the proportion of problems
solved correctly during the entire experiment. As is observed
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in Figure 3, there is a considerable match between the pre-
dicted performance using LOOCV and the actual accuracy
of the subjects, with the correlation of the two being 0.548,
and the mean squared error (MSE) being 0.0393. Thus it can
be concluded that the within-subject brain consistency among
the first 10 correctly solved problems is not only an indicator
but also an effective predictor of the overall performance of
an unseen subject.
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Figure 3: Leave-one-subject-out cross validation (LOOCV) perfor-
mance prediction of 75 subjects compared with the actual subject
performance, using the weights of multiple regression analysis ob-
tained from the rest of the subjects. A total of 4 predictors are 4
within-subject brain consistencies measured across 12 ROIs among
the first 10 correctly solved problems for each of the 4 states. (r =
.548, MSE = .0393).

The same analysis is also carried out using the late brain
consistency instead of the early consistency, which gives
0.346 instead of 0.548 as the correlation between the pre-
dicted performance and the actual accuracy, and 0.0799 as
MSE. A model using all 8 predictors (both early and late) is
significantly better than a model using only later predictors
(F (4, 66) = 5.6679, p = .00055), but not than a model using
only early predictors (F (4, 66) = .7869, p = .538). It can be
concluded that including the early consistency will improve
the prediction using the late consistency, but not vice versa.

The previous analysis indicated that late consistency is sig-
nificantly less predictive than early consistency. Also, as Fig-
ure 2 reveals, late consistency is lower. However, if consis-
tency indicates expertise, with more training, why it would
decrease? We suspect that initially successful subjects are
taking a common approach to the problems. But as time
goes on, subjects start to develop more diverse and problem-
specific strategies. Thus subjects may start displaying more
diverse brain patterns as a result of their more diverse solution
strategies. It is interesting to note in this regard that the better
subjects show a larger decrease in brain consistency from the
early stage to the late stage of the experiment (Figure 2).

The Selected Brain Voxels
Previously, brain consistency was measured as correlation
across the pre-defined 12 ROIs. However, our explanation
of the consistency effect suggests the effects should not be
limited to just these predefined regions, but show up in all

regions that are engaged by the task. Therefore, we apply a
whole brain analysis identifying all engaged regions and test-
ing whether consistency across these regions predicts success
on the task. We identify engaged regions as those brain voxels
whose average activation on the first 10 correctly solved prob-
lems significantly correlated with the subject performance
(r = .2272, p < 0.05, two-tailed). Note that this selection
method does not imply anything about consistency of acti-
vation across voxels, which is the property that we will only
use to predict performance. To examine quantitatively how
well the measure of consistency can predict the subject per-
formance, a similar procedure of leave-one-subject-out cross
validation (LOOCV) is used. First, we select the regions to
correlate by determining which are the engaged voxels for
the other 74 subjects. Then for each state and each sub-
ject, we calculate the within-subject brain consistency – the
mean correlation of activations across selected voxels over
every pair of problems during the early stage of the experi-
ment. Then we regress the four brain consistencies of the 74
subjects against their overall performance. The coefficients
of this regression are used to predict the performance of the
75th subject, given the subject’s four brain consistencies cor-
responding to each state.
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Figure 4: Visualization of the selected brain voxels in red whose
averaged activations over the first 10 correctly solved problems are
significantly (p≤ 0.05) correlated with the subject overall perfor-
mance, for a representative state - Encode, and on one group of 74
subjects. The rest of brain voxels are colored light green. Predefined
ROIs that overlap with the selected regions are noted.

Figure 4 illustrates the brain voxels selected for one group
of 74 subjects. It also shows that these regions overlap
with some of the 12 pre-defined regions like the angular
gyrus (AG), the horizontal segment of the intraparietal sulcus
(HIPS), anterior cingulate cortex (ACC), and the rostrolateral
prefrontal cortex (RPC). The exact number of the selected
voxels differs for each subset of 74 subjects, but is around
one tenth of the total number of voxels. As is observed in
Figure 5, there is a considerable match between the predicted
performance using LOOCV and the actual accuracy of the
subjects, with the correlation of the two being 0.640 and MSE
being 0.029. LOOCV with selected brain voxels further im-
proves the performance prediction compared with previously
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using only the 12 ROIs with correlation of 0.548 and MSE of
0.0393.
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Figure 5: Leave-one-subject-out cross validation (LOOCV) perfor-
mance prediction of 75 subjects compared with actual subject per-
formance, using the weights of multiple regression analysis obtained
from the rest of the subjects. A total of 4 predictors are 4 brain con-
sistencies measured across selected brain voxels among the first 10
correctly solved problems for each of the 4 states. (r = .6404, MSE
= .0292)

Conclusion
This study has shown that success in extending a human
problem-solving procedure from familiar to unfamiliar prob-
lems is reflected in how consistent subjects’ brain responses
are. This consistency refers to both how consistently subjects
respond to different problems (within-subject consistency),
and how brain responses of one subject deviate away from
the global average (between-subjects consistency), with the
former one correlating more strongly with the subject overall
performance. Within-subject brain consistency is most highly
correlated with the subject performance when examining the
early stage of the problem solving, which can serve as an ef-
fective neural predictor. During the later stage of the prob-
lem solving, we think that subjects start developing problem-
specific strategies that decrease the brain consistency over
time. We suggest that the relationship between subject per-
formance and within-subject brain consistency is due to the
perceived similarity between the familiar problems and the
new problems.

Though previous studies have explored the relationship be-
tween consistency and subject performance during transfer
of learning, our study is the first to identify such effect at
the level of neural activity and use this consistency to predict
performance. We also show that the accuracy of predicting
subject performance has been further improved by selecting
the most involved brain voxels rather than only using the pre-
defined 12 regions. Both approaches lead to the same conclu-
sion that subjects who have more consistent brain activation
perform better.
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