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Abstract

In two experiments we manipulated the prior probability
of occurrence for two alternatives. After a first learning
session, in a second session the cue to bias the decision
was reversed. Our investigation shows that subjects are
able to learn the reverse bias only when the bias of the first
session is in line with their expected outcome. When, dur-
ing the first session, the actual outcome of the bias is not
in line with the expected outcome, there is an inhibition
for the reversal bias learning in the second session. We
investigate this phenomenon with computational models
of choice showing that the inhibition of reversal is due to
an increase in the rate at which subjects accumulate evi-
dence for repeated, unexpected stimuli. We discuss a pos-
sible theoretical explanation that links this phenomenon
to similar results found in the literature on reversal learn-
ing and to the effect of novelty on learning.
Keywords: bias; reversal learning; drift diffusion model;
random dot kinematogram

Introduction
The Drift Diffusion Model (DDM, Ratcliff & McKoon,
2008) is a celebrated model of decision making that has
been shown to fit data in a broad variety of - but not
limited to - perceptual decision making tasks (Ratcliff
& McKoon, 2008; Bogacz et al., 2006). In the DDM,
the decision-maker integrates difference in evidence sup-
porting two alternatives until one of two decision bound-
aries is reached and a decision is made in favour of that
alternative.

The DDM is determined by seven parameters: (1) the
boundary separation, a, which describes the distance be-
tween the two decision boundaries; (2) the drift rate, v,
which refers to the rate at which noisy information is ac-
cumulated over time within a trial and reflects the diffi-
culty of the task; (3) the starting point of evidence ac-
cumulation, z, that describes whether the decision-maker
starts to integrate evidence near one of the two bound-
aries (when z is equidistant from the two boundaries, the
decision process is unbiased); (4) a parameter that in-
corporates the non-decision time component of a reac-
tion time, ter, which is the time to encode the stimulus
and execute the motor response; (5) inter-trial variability
in drift rate, eta, (6) inter-trial variability in the starting
point, sz and (7) inter-trial variability in the non decision
time component, st.

In a typical task known as the random-dot kine-
matogram (RDK), the decision-maker is asked to iden-
tify the direction of a coherent subset of dots on a com-
puter screen; typically, a percentage of dots move ran-
domly while the remaining dots move in a coherent di-
rection (Ratcliff & McKoon, 2008). Mulder et al. (2012)
used an RDK task and biased their participants toward
answering ‘left’ or ‘right’ by either manipulating the
prior likelihood of occurrence for one of the two alter-
natives or the reward associated with one of the alterna-
tives. The likelihood manipulation consisted of an arrow
pointing left or right that was presented before the occur-
rence of each trial. The reward associated with one of the
two alternatives was manipulated by assigning different
payoffs to the occurrence of the alternatives. Mulder et
al. (2012) found that both manipulation of bias, either as
prior probability or as potential payoff, can be mapped
onto a change in starting point of evidence accumula-
tion, while the rate at which the evidence is accumulated
is not affected. In our investigation, we are interested on
whether and how, once a perceptual bias is ‘learned’, it
can be modified and which parameters of the decision
process are associated with the modification of bias.

Experiment 1
We focused on bias reversal: the situation in which, af-
ter a bias is learned, subjects are exposed to the opposite
bias. We are interested in subjects’ behavioural perfor-
mance and in which parameters are affected both in the
first bias learning phase and in the bias reversal learn-
ing phase. In our first study, subjects were performing
an RDK task similar to the one used in Mulder et al.
(2012). For simplicity, we define ‘congruent’ the session
where there is, most of the time, congruency between
the arrow and the direction of the dots (as compared to
the ‘incongruent’ session) and we define the single tri-
als as ‘valid’ or ‘invalid’ as a function of the correspon-
dence between the arrow and the direction of the dots. A
group of subjects was presented with a ‘congruent’ ses-
sion while a second group was presented with an ‘incon-
gruent’ session. After a considerable number of trials
during which subjects learned the bias, the bias was re-
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versed. In this way, the group that in the first phase of the
experiment was presented with a congruent bias was af-
terwards switched to an incongruent bias and vice versa.
Our results show that only the group that switched from
a congruent cue to an incongruent cue (for simplicity de-
fined as the ‘c to i’ group) could learn to modify the bias
while the second group that switched from an incongru-
ent cue to a congruent cue (the ‘i to c’ group) did not
modify the bias when it was reversed.

Subjects
Six healthy subjects (4 female, mean age = 23.3, SD =
0.6) performed an RDK task. For this and the follow-
ing studies, subjects were recruited among Peking Uni-
versity students and had normal or corrected-to-normal
vision. Their participation was voluntary and rewarded
monetarily. The procedure was approved by the ethical
review board at Peking University and informed consent
was obtained from each subject.

Stimuli
The task consisted of an RDK task in which the prior
probability of occurrence of one alternative was manipu-
lated before the occurrence of each trial by presenting an
arrow pointing left or right. Subjects were asked to fixate
upon a cross on the centre of the screen, pay attention to
the arrow that was presented before each RDK trial, and
make their decision for each trial by pressing ‘left’ or
‘right’ on a keyboard. They were instructed to be as fast
and accurate as possible in making a decision. The stim-
uli were similar to those used by Mulder et al. (2012):
within a circle aperture of 5 deg, white dots with a size
of 3x3 pixels were moving with a speed of 3 deg/s and
a density of 16.7 dots/deg2/s on a black background.
On each frame, noise dots followed a random, but con-
stant direction. Signal dots had a limited lifetime of three
frames after which they were redrawn in random loca-
tions. On each three consecutive frames (i.e. from 1 to
3, from 4 to 6 and so on) the dots constituting the signal
were the same. The stimuli were generated on a personal
computer using PsychoPy (Peirce, 2007) and presented
on a 36 x 27 cm CRT screen with a refresh rate of 60
Hz at a viewing distance of 56 cm where the head of the
subject was positioned on a chin rest. As done by Mulder
et al. (2012), we matched the difficulty of the task across
subjects. For this purpose, subjects performed a block
of 200 trials of randomly presented stimuli with differ-
ent coherence levels (respectively, 3, 10, 20, 30, or 40%
coherence, 40 trials each) and by using the maximum-
likelihood estimation procedure described in Palmer et
al. (2005), for each subject, we computed the motion
strength required for an expected accuracy level of 80%.

The cue to bias the decision was a white arrow pre-
sented on the centre of the screen, pointing to the left

or to the right and indicating the correct response 80%
of the times. One block consisted of 80 trials and after
each block, subjects could take a self-paced break before
continuing to the next trials. Subjects received 20 U for
their participation and were told that they could earn up
to 50 extra U if they would have reached 100% accu-
racy during the task. No penalty was introduced for a
wrong answer. After each trial they were given a feed-
back (‘correct’ or ‘wrong’) and at the end of each block
they were shown their average accuracy for the block.
Subjects were also presented with neutral trials, in which
instead of the arrow, they were presented only a rectan-
gular shape equal to the rectangle constituting the body
of the arrows of the biased trials.

Paradigm timing
Subjects performed 4 consecutive blocks of each biased
session (i.e. the congruent or incongruent) and 4 con-
secutive blocks of neutral trials of an RDK task. At the
beginning of each trial, subjects were presented a fix-
ation cross for either 500 or 1500 ms after which the
cue was presented for 1000 ms, followed by a fixation
cross with a duration of 1000, 1500, 2000, or 2500 ms.
Next, the RDK was presented for 1500 ms during which
subjects had to make a decision by button press. After
each trial, subjects were presented a feedback for 500
ms showing the number of points earned and whether
the previous trial was correct or wrong. If subjects an-
swered faster than 150 ms or slower than 1500 ms, they
were presented with the words ‘miss’ (in Chinese) or
‘too fast’ (in Chinese) for 500 ms. Session-order was
counterbalanced across subjects with a group perform-
ing a congruent-to-incongruent-cue manipulation and a
second group performing an incongruent-to-congruent-
cue experiment. The order of presentation of the neutral
blocks was counterbalanced across subjects.

Behavioural analyses
A first inspection of the data showed that there was no
cross-session learning and the performance of the sub-
jects after the first block of each session was stable.
For simplicity, in all the analyses we collapsed the data
across blocks and we created five experimental condi-
tions: (1) congruent session valid trials; (2) congruent
session invalid trials; (3) incongruent session valid tri-
als; (4) incongruent session invalid trials and (5) neutral
trials.

To investigate the effects of our manipulation, we en-
tered correct RTs, wrong RTs and accuracy levels, sepa-
rately for each group, in three different 2 x 2 mixed-effect
models with Session (congruent, incongruent), Validity
(valid trials, invalid trials) and the interaction between
Session and Validity as fixed factors and random effects
for subject-specific constants and slopes, Figure 1. On
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Figure 1: Mean correct RTs (first row), wrong RTs (sec-
ond row) and accuracy levels (third row) for the ‘c to i’
group (left) and the ‘i to c’ group (right). Bars indicate
standard errors of the group mean.

correct RTs, for the ‘c to i’ group, the interaction be-
tween Session and Validity resulted almost significant [F
(1, 15.10) = 3.45, p = .08]. On correct RTs, for the ‘i
to c’ group, no significant effect was found (p>.43). On
wrong RTs, for the ‘c to i’ group, the main effect of Ses-
sion resulted significant [F (1, 6.55) = 8.63, p = .02] and
the interaction effect between Session and Validity was
also significant [F (1, 26.13) = 7.56, p = .01]. Post-hoc
tests with Bonferroni correction showed that, in the con-
gruent session, subjects had faster errors for the invalid
trials (M = .90, S.E.= .03) than for the valid trials (M =
.98 S.E. = .02; p = .03). On wrong RTs, for the ‘i to
c’ group, no significant effect was found (p>.46). On
accuracy levels, for the ‘c to i’ group, the interaction be-
tween Session and Validity resulted significant [F(1,11)
= 15.49, p =.002]. In the congruent session, subjects
were less accurate for the invalid trials (M = .61, S.E.
= .10), than for the valid trials (M = .87, S.E. = .05; p =
.04). On accuracy levels, for the ‘i to c’ group, no signif-
icant effect was found (p>.30).

Model fitting
We fitted the diffusion model to RT distributions and pro-
portions of correct and wrong responses using the Diffu-
sion Model Analysis Toolbox (Vandekerckhove & Tuer-
linckx, 2007) for MATLAB in which parameters are esti-
mated by minimising a chi-square function. We decided
to represent the reaction time distributions of correct and
error responses in terms of five deciles, the 1st, 3rd, 5th,
7th and 9th decile of the RT distribution.

We fitted each subject separately, and for each subject
we allowed the drift rate to vary freely across conditions
and the starting point of evidence accumulation to vary

as a function of the session (congruent vs. incongruent).
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Figure 2: Effects of bias in DDM parameters. Average
effects across subjects for starting point (left) and for
change in drift rate with regards to the drift rate of the
neutral trials (right). The blue horizontal line represents
the unbiased level a/2 (left) and the level at which the
drift is zero (right). Asterisks show whether Wilcoxon
Signed Rank tests resulted significant. X axis refers to (c
v) congruent session valid trials (c i) congruent session
invalid trials (i v) incongruent session valid trials and (i
i) incongruent session invalid.

Figure 2 shows how the different parameters of the
DDM were affected during the task; in particular we
show how the starting point varied across sessions and
what is the proportional change in drift rate as compared
to the drift rate of the neutral trials.

Wilcoxon Signed Rank tests were performed to assess
whether the starting point of evidence accumulation dif-
fered from the unbiased level (H0: median value of start-
ing point = a/2, p < 0.05) and whether the proportional
change in drift rate (with regards to the neutral trials) dif-
fered from zero (H0: median value of ∆v/vunbiased = 0, p
< 0.05). Results are reported in Figure 2.

group a ter eta sz st

c to i 0.11 0.63 0.15 0.04 0.30
i to c 0.11 0.63 0.32 0.06 0.32

Table 1: Parameter’s values for the ‘c to i’ and the ‘i to
c’ group.

In Table 1 are reported the mean values of the bound-
ary separation, ter, eta, sz and st for the two groups; these
parameters, being practically identical between the two
groups, did not differ between groups (p > .11) as shown
by mixed models with Group as fixed factor and random
effects for subject-specific constants.
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Experiment 2
In a second study, we tested the hypothesis that subjects
in the ‘i to c’ group could not reverse the bias since they
had to firstly learn a rule not in line with their expected
outcome (i.e. that the arrow would point in the future
direction of the dots) and this prevents them from over-
writing the new rule when the bias is reversed.

We tested this hypothesis by manipulating the ex-
pectations of the subjects: all subjects performed an
incongruent-to-congruent experiment as the ‘i to c’
group of the first study. However, before starting the
experiment, one experimental group performed a train-
ing block in which there was always congruency between
the arrow and the direction of the dots (congruent train-
ing group, for simplicity ‘c training’ group), and a sec-
ond group performed a training block in which there was
always incongruency between the arrow and the direc-
tion of the dots (incongruent training group,‘i training’
group). Our prediction was that only the group that had
an incongruent training and for which the following in-
congruent session of trials was in line with their expected
outcome (i.e. that the cue gives information about the
opposite direction of the dots as experienced during the
training) could modify their bias, as done by the ‘c to i’
group of the first experiment. We expected that the group
that had the congruent training would instead exhibit a
performance similar to that of the ‘i to c’ group of the
first experiment, since they would not be able to reverse
their bias, having learned a first bias that was in contrast
with the expectations from the habituation manipulation.
In this experiment, no neutral trials were presented.

Materials and Methods
Seven healthy subjects (4 female, mean age = 22.29, SD
= 1.38) performed the second experiment. The apparatus
and methods are as described for the first experiment. In
this experiment, all subjects performed a congruent ses-
sion after having performed the incongruent session. We
manipulated the expected outcome of the first session by
use of habituation. At the beginning of the experiment,
subjects were presented two blocks of 80 trials and they
were instructed that these trials were training trials to fa-
miliarise with the task. In this training phase, the arrow
was indicating the valid or invalid direction of the trials
100% of the times. We created two groups: 4 subjects
always had an invalid training while 3 subjects always

Behavioural analyses
performed a valid training.

We entered correct RTs, wrong RTs and accuracy lev-
els, separately for each group, in three different 2 x 2
mixed-effect models with Session (incongruent, congru-
ent), Validity (valid, invalid) and the interaction of Ses-
sion and Validity as fixed factors and random effects for

tra. inc. con.

0.6

0.8

session

m
e

a
n

 c
R

T

tra. inc. con.
0.6

0.8

1

session

m
e

a
n

 w
R

T

tra. inc. con.

0.7
0.8
0.9

session

m
e

a
n

 a
c

c
u

ra
c

y

tra. inc. con.

0.6

0.8

session

m
e

a
n

 c
R

T

 

 

valid

invalid

tra. inc. con.
0.6

0.8

1

session

m
e

a
n

 w
R

T

tra. inc. con.

0.7
0.8
0.9

session

m
e

a
n

 a
c

c
u

ra
c

y

Figure 3: Mean correct RTs (first row), wrong RTs (sec-
ond row) and accuracy levels (third row) for the ‘c train-
ing’ group (first column) and the ‘i training’ group (sec-
ond column).

subject-specific constants and slopes, Figure 3. On cor-
rect RTs, for the ‘c training’ group, no significant effect
was found (p>.49). On correct RTs, for the ‘i training’
group, the interaction between Session and Validity re-
sulted significant [F (1, 13.43) = 7.14, p = .02]. In the in-
congruent session subjects were faster for the invalid (M
= .67, S.E. = .05) than for the valid trials (M = .76, S.E.
= .05; p=.09). On wrong RTs, for the ‘c training’ group,
no significant effect was found (p>.49). On wrong RTs,
for the ‘i training’ group, the interaction between Ses-
sion and Validity resulted significant [F (1, 27.03) = 7.6,
p = .01]. In the incongruent session, subjects had faster
errors for the valid trials (M = .67, S.E. = .05) than for
the invalid trials (M = .79, S.E. = .05; p=.03). On ac-
curacy levels, for the ‘c training’ group, no significant
effect was found (p>.11). On accuracy levels, for the ‘i
training’ group, the interaction between Session and Va-
lidity resulted significant [F(1,12) = 8.03, p =.02]. In the
congruent session subjects were less accurate for the in-
valid trials (M = .75, S.E. = .09), than for the valid trials
(M = .90, S.E. = .04; p = .03).

Model fitting
We recovered DDM parameters for each subjects as done
in the first study. Figure 4 shows how the different pa-
rameters of the DDM are affected during the task, both
for the ‘c training’ and the ‘i training’ group. Wilcoxon
Signed Rank tests were performed to assess whether the
starting point of evidence accumulation differed from the
unbiased level and whether the proportional change in
drift rate (with regards to the training trials) differed from
zero. Results are reported in Figure 2. The mean values
of the other parameters of the DDM, that did not differ
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Figure 4: Effects of bias in DDM parameters. Aver-
age effects across subjects for starting point (left) and
for drift rate as compared to the drift rate of the training
trials (right).

between groups (p > .79), are reported in Table 2.

group a ter eta sz st

i training 0.12 0.49 0.2 0.03 0.27
c training 0.12 0.53 0.14 0.02 0.31

Table 2: Parameter’s values for the ‘c training’ and the ‘i
training’ group.

Discussion
Our results show that when subjects learn a bias that is in
line with their expectations, they are able to modify the
bias in a second reversal session, but when they learn a
bias that is not in line with their expectations, they are
not able to modify the bias in a second reversal session.
Only the group that firstly learned a bias in line with their
expectations, either naive expectations (study 1) or con-
trolled expectations (study 2), could become faster and
more accurate for the trials for which they were slower
and less accurate in the first session. A third investiga-
tion that we do not report in detail in this paper, showed
that, for the ‘i to c’ group of the first study, even though
the number of trials of the reversal session is doubled,
subjects (n = 5) still cannot learn to modify the bias. In
this way we rule out the hypothesis that what prevented
subjects from learning the reversal bias was the length of
the session that could be not long enough to give time to
learn the reversal bias.

Similar results can be found in the literature on rever-
sal learning showing inhibition of reversal dependant on
the initial conditions of learning (Lindenblatt & Delius,
1988; Pace et al., 1980; Richman & Coussens, 1970;

Reid, 1953). For example, Newman et al. (1980) have
found that, for human subjects, learning a discrimination
based upon the presence of a feature is easier than learn-
ing a discrimination based upon the absence of a feature.
However, when there is a reversal, so that subjects who
had learned a rule based upon the presence (absence) of
a feature are then switched to a new session in which
they have to learn the new rule based upon the absence
(presence) of the rule, only subjects in the presence-to-
absence group can master the reversal while subjects in
the absence-to-presence group cannot master the rever-
sal. This same result is replicated in multiple experi-
ments on pigeons, monkeys, rats and humans by different
methods and typology of stimuli for the discrimination
(Lindenblatt & Delius, 1988; Pace et al., 1980; Richman
& Coussens, 1970; Reid, 1953; Newman et al., 1980). In
these studies, learning discrimination to a low criterion
inhibits the acquisition of the reversal rule, while learn-
ing it to a high criterion does not interfere with learning
the reversal, but instead facilitates the reversal in some
cases (Lindenblatt & Delius, 1988; Reid, 1953).

We believe that our results can be due to the fact
that different cue-stimulus correlations have, depend-
ing on their sign, different attention-enhancing effects in
the first session of the experiment that are maintained
throughout the task. When this correlation is positive,
the attention-enhancing effect is low since the rule is
easily understood and the decision is stimulus-driven in
a bottom-up fashion allowing the possibility of over-
writing the rule in the second session. However, when
the cue-stimulus correlation is negative, the attention-
enhancing effect is high and the decision is rule-driven
in a top-down fashion; this leads to a stronger learn-
ing of the difficult rule, that as a consequence, inhibits
overwriting this rule with the new reversal rule. The
attention-enhancing effect represents a cuing advantage
for unexpected, repeated stimuli in order to learn the rule
and maximise the reward during the first session. The
decision-maker, right after the presentation of the cue,
pays attention to the direction predicted by the unex-
pected stimulus (i.e. in the first study, in the opposite
direction of the arrow) and this means that more infor-
mation can be obtained from such directions, resulting in
faster and more accurate decisions when the prediction
is matched compared to when it is not matched. How-
ever, during the reversal, the decision-maker is still more
biased towards the opposite direction and hence the pre-
vious advantage becomes a disadvantage. The attention-
enhancing effect elicited by a first cue not in line with
the expectations could be revealed by the higher drift
rates that subjects of the ‘i to c’ group of the first study
and subjects of the ‘c training’ group of the second study
show for the invalid trials of the second session. The rate
at which information is accumulated to make a decision
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can be modulated by attention, and an attentional gain re-
sulting in a signal-to-noise increase (i.e. faster RTs and
higher accuracy levels) has been described in perceptual
decision making (Smith et al., 2004). This interpreta-
tion is in line with the behavioural results of the first and
second study. Also, our explanation is in line with ex-
perimental evidence showing that the magnitude of the
difference between the expected outcome and the actual
outcome results in an increase in dopamine levels that is
associated with attentional orienting (Daw et al., 2006).

In the literature, two mechanisms have been proposed
for the effect of bias: one affects the starting point of
evidence accumulation (Mulder et al., 2012; Diederich
& Busemeyer, 2006), while the second affects the rate
at which evidence is accumulated (Bogacz et al., 2006;
Diederich & Busemeyer, 2006). An effect of bias on the
starting point is in line with that found by Mulder et al.
(2012). However, together with the variation in starting
point, we show that the drift rate can also be affected by
a bias.

It is not surprising that subjects find pointing in the
direction of the arrow as the expected outcome. Behne
et al. (2012) have shown that even 12-month old in-
fants show an understanding of communicative pointing,
and Butterworth (2003) has proposed that pointing ges-
tures spontaneously emerge from other developmental
achievements playing a pivotal role during development.
Pointing in the opposite direction of a stimulus of interest
is rather an experimental artefact than a behaviour natu-
rally observed.

Future studies should investigate whether the theoret-
ical explanation proposed is consistent across different
sets of stimuli and tasks, and answer the broader gen-
eral question of why, from an ecological perspective, the
inhibition of reversal in various tasks and domains char-
acterise human and animal cognition.
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