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Abstract
How do people plan ahead in sequential decision-making
tasks? In this article, we compare computational models of hu-
man behavior in a challenging variant of tic-tac-toe, to inves-
tigate the cognitive processes underlying sequential planning.
We validate the most successful model by predicting choices
during games, two-alternative forced choices and board evalu-
ations. We then use this model to study individual skill differ-
ences, the effects of time pressure and the nature of expertise.
Our findings suggest that people perform less tree search un-
der time pressure, and that players search more as they improve
during learning.
Keywords: Sequential decision-making, Behavioral model-
ing, Expertise

Introduction
Imagine you are deciding if you should run for President of
the United States in 2020. To make that choice, you have
to consider a sequence of future decisions. Will you run as
a Republican, Democrat or Independent? If Democrat, will
you run as a moderate or progressive candidate? What posi-
tions will you take on abortion or gun control? How will you
distinguish yourself during the primaries? What line of attack
will you choose in the Presidential Debates? You face a se-
quence of decisions, which together determine your electoral
success. In short, you have to explore a decision tree.

Although the computations underlying human decision-
making are extensively studied, the process by which peo-
ple explore decision trees is less understood. Most work fo-
cuses on the neural implementation of learning and decision-
making in small decision trees (Solway & Botvinick, 2015;
Simon & Daw, 2011). However, with more choices and more
available options, the decision tree grows exponentially, and
people need to prune the tree (Huys et al., 2012).

There exists a large literature exploring human decision-
making in chess, starting with de Groot’s seminal arti-
cle (A. D. de Groot, 1946). One central question in this lit-
erature is whether the superior performance of experts relies
primarily on enhanced pattern recognition (Chase & Simon,
1973), increased tree search (Holding, 1985), or both. The
relation between tree search and expertise is especially con-
troversial, with both positive (Campitelli & Gobet, 2004) and
negative (A. D. de Groot, 1946) results.

In this article, we investigate sequential decision-making in
a two-player board game, which is much simpler than chess,
but much more complex than traditional decision-making
tasks. We develop a computational model that predicts peo-
ple’s choices on individual trials, and fit this model to data
from individual participants. We then ask whether the compu-
tations performed by our model mimic the process by which
people arrive at their decisions. Finally, we use our model to
investigate the nature of expertise in our game.

Experiments
Task. To investigate the computations underlying sequen-
tial decision-making, we collected data from people playing
a variant of tic-tac-toe, in which players need to make 4-in-a-
row on a 4-by-9 board (figure 1A). Despite these simple rules,
the game is surprisingly challenging and fun to play. Because
the game is deterministic without hidden information, it is
theoretically solvable. Using alpha-beta pruning and threat
tree search (Allis et al., 1994), we were able to derive a weak
solution: the first player can force a win by opening on the
central square. However, with perfect defense, the second
player can delay the win for 17 moves.

Figure 1: Task. A. Two players take turns placing black or
white pieces on a 4-by-9 board, and the first to achieve 4-in-
a-row (horizontal, diagonal or vertical), wins the game. B.
In the 2AFC task, participants see a board and two candidate
moves, and indicate their preferences. C. In the evaluation
task, participants see a board position and report their esti-
mated winning chances on a 7-point scale.

Participants. We conducted four experiments: human-vs-
human (N = 40 participants), generalization (N = 40), time
pressure (N = 30), and learning (N = 30). We recruited par-
ticipants through the NYU psychology research participant
system, flyers, a sign-up link on our lab webpage or personal
communication. We did not collect demographic data. We
compensated participants 12 per hour, but did not incentivize
task performance.
Procedure. In the human-vs-human experiment, we divided
participants into pairs. Participants in each pair played games
against each other without time constraints for 50 minutes,
switching colors every game. In the generalization experi-
ment, participants performed three tasks: playing the game
against a computer opponent for 30 minutes, 82 trials of a
two-alternative forced-choice (2AFC) between moves in a
given board position (figure 1B), and 82 board evaluation tri-
als, in which they rated their winning chances in given board
positions on a 7-point scale (figure 1C). The time pressure
experiment was identical to the human-vs-computer compo-
nent of the generalization experiment, except that for each
game, we added a time limit randomly selected between 5,
10 or 20 seconds per move. If participants exceeded the time
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limit, they lost the game. The learning experiment consisted
of 5 sessions, no more than 3 days apart. In sessions 1, 3 &
5, participants played against computers for 30 minutes, then
completed 60 trials each of the 2AFC and evaluation tasks.
In session 2 & 4, they played against computers for the entire
50-minute session.

In all human-vs-computer games, the computer opponents
implemented an early version of our computational model for
people’s decision-making process, with parameters adapted
from fits on human-vs-human games. We created 30 AI
agents, grouped by playing strength into 6 groups of 5 agents
each, and matched participants with AI opponents through a
one-up, one-down staircase procedure.

In the 2AFC and evaluation task, each participant com-
pleted the same trials in shuffled order. We selected board
positions and move options that maximize an approximation
to mutual information between model parameters and move
choice, in order to present participants with interesting and
informative choices.

Model
Value function. The core component of our model is an eval-
uation function V (s) which assigns values to board states s.
We use a weighted linear sum of 5 features: center, connected
2-in-a-row, unconnected 2-in-a-row, 3-in-a-row and 4-in-a-
row. The center feature assigns a value to each square, and
sums up the values of all squares occupied by the player’s
pieces. This value of each square is inversely proportional to
its Euclidean distance from the board center. The other fea-
tures count how often particular patterns occur on the board
(horizontally, vertically, or diagonally):
Connected 2-in-a-row: two adjacent pieces with enough
empty squares around them to complete 4-in-a-row.
Unconnected 2-in-a-row: two non-adjacent pieces which lie
on a line of four contiguous squares, with the remaining two
squares empty.
3-in-a-row: three pieces which lie on a line of four contigu-
ous squares, with the remaining square empty. This pattern
represents an immediate winning threat.
4-in-a-row: four pieces in a row. This pattern appears only in
board states where a player has already won the game.

We associate weights wi to these features, and write

V (s) = cself

4

∑
i=0

wi fi(s,self)− copp

4

∑
i=0

wi fi(s,opponent)

where cself =C and copp = 1 whenever the player is to move
in state s, and cself = 1 and copp = C when it is the oppo-
nent’s move. The scaling constant C captures value differ-
ences between “active” and “passive” features. For exam-
ple, a three-in-a-row feature signals an immediate win on the
player’s own move, but not the opponent’s.

Tree search. The evaluation function guides the construc-
tion of a decision tree with an iterative best-first search algo-
rithm. Each iteration, the algorithm chooses a board position
to explore further, evaluates the positions resulting from each

legal move, and prunes all moves with value below that of
the best move minus a threshold. After each iteration, the al-
gorithm stops with a probability γ, resulting in a geometric
distribution over the total number of iterations.

Noise. To account for variability in people’s choices, we
add three sources of noise. Before constructing the decision
tree, we randomly drop features (at specific locations and ori-
entations), which are omitted during the calculation of V (s)
anywhere in the tree. During tree search, we add Gaussian
noise to V (s) in each node. Finally, we include a lapse rate λ.

The components of our computational model are inspired
by behavioral studies of human decision-making. Tree
search, as a mechanism whereby people mentally simulate
the consequences of available actions, is similar to “level-
K reasoning” (Arad & Rubinstein, 2012) in behavioral eco-
nomics. In other decision-making tasks, people have been
shown to prune away options leading to immediate losses but
long-term gains (Huys et al., 2012). Feature dropping reflects
shift in endogenous attention (to spatial locations, orientation
or feature types), corresponding to participants overlooking
relevant features on the board. Finally, feature-based evalua-
tion functions, value noise and lapse rates are all common in
reinforcement learning.

There also exists neural evidence consistent with our
model. In rats, dynamic search and exploration of possible
paths at junctions in a T-maze have been linked to preplay
sequences in hippocampal place cells (Johnson & Redish,
2007). In humans, tree search is associated with neural activ-
ity in the ventral striatum (Simon & Daw, 2011) and ventro-
medial prefrontal cortex (Lee, Shimojo, & ODoherty, 2014).

Methods
Estimating task performance. To quantify task perfor-
mance in human-vs-computer games, we use the Elo rating
system (Elo, 1978), which estimates playing strength from
game results, independent of the moves played. We append
the results of games from all 4 experiments to a computer-
vs-computer tournament, and estimate ratings jointly for all
humans and computers with a Bayesian optimization al-
gorithm (Hunter, 2004). To calculate performance in the
2AFC task, we calculate the agreement between a partici-
pant’s choices and those of an optimal agent with random
tie-breaking. In the evaluation task, we define performance
as the correlation between a participant’s choices and the op-
timal rankings.

Estimating model parameters The model has 10 param-
eters: the 5 feature weights, the active-passive scaling con-
stant C, the pruning threshold, stopping probability γ, fea-
ture drop rate δ and the lapse rate λ. We infer these param-
eters for individual participants and individual learning ses-
sions or time limit conditions with maximum-likelihood es-
timation. We estimate the log probability of a participant’s
move in a given board position with inverse binomial sam-
pling (M. H. de Groot, 1959), and optimize the log-likelihood
function with multilevel coordinate search (Huyer & Neu-

1255



maier, 1999). We account for potential overfitting by re-
porting 5-fold cross-validated log-likelihoods, with the same
testing-training splits for all models.

Model comparison
To test how well our model predict participants’ choices,
we compare its log-likelihood on human-vs-human games to
that of 25 alternative models (figure 2). We test four cate-
gories of alternative models: lesions, generated by remov-
ing model components; extensions, generated by adding new
model components; modifications, generated by replacing a
model component with a similar implementation; and con-
trols, which are structurally different from the main model.

Figure 2: Cross-validated log-likelihood/move for our main
model and 25 alternatives on the human-vs-human data. The
bars show mean and s.e.m. across participants (N = 40). The
main model fits better than lesions, most controls and some
modifications, and approximately equally good as extensions
or some other modifications.

Lesions. We create lesion models by forcing either one of
the feature weights to zero, or removing the feature dropping,
pruning, value noise, active-passive scaling or the entire deci-
sion tree. The no-tree model evaluates the positions after each
possible move, and chooses the one with maximum value. It
contains feature dropping and value noise but no pruning.

Extensions. We consider extending the model with a fea-
ture that recognizes to a three-piece pattern arranged in a tri-
angle, or multiplying the weights for diagonally and vertically
oriented features by scaling constants cdiag or cvert, respec-
tively. Alternatively, we extend the main model by allowing
feature drop rates to differ between features of different types
(2-in-a-row, 3-in-a-row, etc) or orientations. Finally, we test
a model in which all weights for the opponent’s features are
scaled by a factor copp, which thereby controls the balance
between attack and defense.

Modifications. We modify the model by fixing the num-
ber of iterations of the search algorithm to a constant instead
of the geometric distribution prescribed by the main model.
Alternatively, we amend the search process to explore each
branch of the tree up to fixed depth, or the pruning rule to
keep only the K best moves (according to the evaluation func-
tion), where the branching factor K is again fixed. For a more
drastic modification, Monte Carlo Tree Search (MCTS) esti-
mates state values not by calling the evaluation function V (s),
but by aggregating outcomes of simulated games between no-
tree agents. It also extends the best-first search algorithm
by adding a term that favors exploration (investigating unex-
plored moves) over exploitation (further investigating already
explored moves). We consider fixing the feature weights to
the optimal solution, i.e. those weights that maximize the
correlation between V (s) and the game-theoretic value of the
position s. Finally, we modify the attention mechanism from
dropping random features from the evaluation function to
dropping random branches from the decision tree.

Controls. We consider MCTS with completely random
playouts, or a mixture model between optimal and random
play. The optimal agent enumerates all candidate moves
that preserve the game-theoretic value of the position, and
chooses randomly between them. Another control model, la-
beled soft-max, assigns a value to each square on the board
(enforced to obey reflection/rotation symmetry), and chooses
a move with a softmax decision rule, constrained to unoccu-
pied squares.

All lesioned models fit worse than the full model. The most
impactful lesions are specific features (3-in-a-row, connected
2-in-a-row and center) and sources of variability (value noise
and feature dropping). Lesioning the pruning mechanism or
the entire tree search algorithm has a less dramatic effect,
which can be partially explained by parameter trade-offs. Fi-
nally, some lesions (active-passive scaling, unconnected 2-
in-a-row and 4-in-a-row) cause only small reductions in log-
likelihood. Most modifications also worsen the main model,
but the Monte Carlo Tree Search model is equally good and
the “fixed iterations” model slightly outperforms it. The
model extensions also slightly increase the main model’s per-
formance. Finally, all control models fit much worse than the
main model.

Unfortunately, the model comparison does not reveal a
unique best-fitting model, meaning that we did not collect
enough data to determine precise details of people’s thought
process. For example, we cannot distinguish between tree
search algorithms (best-first search or MCTS) or determine
specifics of the best-first search algorithm (pruning and num-
ber of iterations). Alternatively, different participants may
use different strategies. However, the model comparison does
suggest that any model that can predict human choices needs
to contain a feature-based evaluation function, and mecha-
nisms for attentional oversights and tree search.
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Generalization to 2AFC and Evaluation
Next, we show that the model can generalize by estimating
parameters from subjects’ choices in games against comput-
ers and predicting their choices in the 2AFC or evaluation
tasks with minimal additional assumptions. To select an op-
tion on a 2AFC trial, the only change we make is to initial-
ize the tree search algorithm with a three-node decision tree
with the current board position as the initial node and the two
available candidate moves as children. On an evaluation trial,
we execute the tree search algorithm as usual, then measure
the value of the root node. We then convert this value to a
seven-point scale by transforming v→ 3+ 4tanh(v/20) and
rounding to the nearest integer.

Figure 3: A. Histogram of the percentage of correctly pre-
dicted 2AFC choices by our model across N = 40 partici-
pants. We fit parameters for each participant on their choices
in games against computers. The dashed line indicates the
accuracy of a random prediction. B. Same for the evalua-
tion task, where we quantify goodness-of-fit as the correla-
tion across trials between rankings predicted by the model
and reported by a participant.

The average accuracy of the model prediction on 2AFC
data is 58.6± 1.0% (figure 3A), the average correlation be-
tween predicted and observed evaluations is ρ = 0.38±0.04
(figure 3B). The prediction is better than chance for 36/40
participants in the 2AFC task, and 37/40 for evaluation.

Even though our model predicts participants’ choices in
these additional tasks well on average, the goodness-of-fit
is highly variable across participants. This variability in
goodness-of-fit is correlated across subjects between the three
tasks (2AFC-evaluation: ρ = 0.54, p < 0.001; 2AFC-games:
ρ = 0.35, p < 0.05; evaluation-games: ρ = 0.24, p = 0.12).
Moreover, on the 2AFC and evaluation task, goodness-of-
fit correlates with participants’ objective task performance
(2AFC: ρ = 0.56, p < 0.001; evaluation: ρ = 0.96, p <
0.001). This suggests that the variability in goodness-of-fit
can at least partially be explained by differences in intrinsic
variability across participants.

How experimental manipulations affect model
parameters

To further support the model, we investigate whether its pa-
rameters respond in predictable ways to experimental manip-

ulations. As our first manipulation, we introduce time con-
straints of 5, 10 or 20 seconds per move. Second, we conduct
an experiment in which participants play the game for 5 ses-
sions.

Given a set of parameters for an individual participant in a
time limit condition or learning session, we simulate moves
made by the model in a database of pre-determined posi-
tions and measure 3 statistics of its process: the percentage
of dropped features, the value quality (correlation between
V (s) and the game-theoretic value V ∗(s)) and the mean tree
size (number of nodes in its decision tree). Note that tree size
incorporates both the width and depth of the decision tree.

Based on the literature on expertise and time pressure in
chess, we expected that time constraints would reduce tree
size but not affect value function quality. In the learning ex-
periment, we expected the value function quality to increase
across sessions and the tree size to remain constant or in-
crease only slightly. Since chess algorithms often do not
explicitly include feature dropping or similar mechanisms,
we made no predictions for its trajectory. Finally, we pre-
dict that experience increases participants’ task performance
while time pressure reduces it.
Time pressure To test the effectiveness of time constraints to
manipulate participants’ behavior, we first plot the distribu-
tion of response times in the three conditions, as well as the
response times from the unconstrained (generalization) ex-
periment (figure 4A). Adding time pressure causes an overall
shift in the response time distribution regardless of the time
limit. Additionally, participants play faster with shorter time
constraints. Surprisingly, there is no consistent effect of time
constraints on participants’ performance (figure 4B).

Figure 4: A. Empirical cdf of response times in the three con-
ditions of the time pressure experiment (red), and the gener-
alization experiment (blue). In the latter experiment, players
could take arbitrary amounts of time, which we denote as an
infinite time limit. People play faster with shorter time lim-
its. B. Task performance, quantified by Elo rating, for the
same experiments and conditions. Error bars indicate mean
and s.e.m. across participants (N = 30). The effect of time
limits on performance is unclear.

In figure 5 (top), we show the feature drop rate, value func-
tion quality and tree size in different time limit conditions.
Compared to the unconstrained experiment, participants build
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smaller trees and drop more features, while the value function
quality is similar. The impact of the time constraint on tree
size becomes larger with shorter time limits, but the feature
drop rate shows the opposite trend and is at its highest in the
20-second condition. We speculate that the stress of poten-
tially losing on time causes participants to pay more attention
with shorter time limits, whereas with 20 seconds, they are
more relaxed and make more attentional lapses.

Figure 5: Top row. Estimated model parameters in the time
pressure and generalization experiments. Error bars denote
mean and s.e.m. across participants. The model infers a re-
lation between time limit and tree size, but unclear effects
on feature dropping and the value function quality. Bottom
row. Model parameters and Elo rating for each participant in
each time limit condition. The tree size and feature drop rate
correlate with Elo rating, but value function quality does not.

To understand the surprising negative result of figure 4, we
investigate how Elo rating and parameter estimates correlate
across both individuals and time limit conditions (figure 5,
bottom). Stronger players (in all time limit conditions) are es-
timated to build larger decision trees and drop fewer features.
Therefore, the increased tree size with longer time limit pre-
dicts a performance increase, but the increased feature drop
rate predicts decreased performance. These opposite effects
happen to be approximately equal, which explains the lack of
correlation between time limit and Elo rating.
Learning We first validate that experience affects partici-
pants’ behavior by plotting Elo rating as a function of session
number (figure 6). Next, we investigate changes in parame-
ters across sessions (figure 7, top). Tree size increases across
sessions, feature drop rate decreases and value function qual-
ity remains constant. As in the time pressure experiment, tree
size and feature drop rate correlate with Elo rating on an in-
dividual level (figure 7, bottom), and the change in parame-
ter estimates across sessions explains changes in task perfor-
mance. Experienced players build larger decision trees and
drop fewer features, both of which predict increased playing
strength, which matches the data.

Figure 6: Elo rating of N = 30 participants in the learning
experiment (mean and s.e.m. across participants). As partici-
pants gain expertise, they play stronger.

Figure 7: Top: Model parameters as a function of sessions
completed in the learning experiment. Over the course of
learning, tree size is estimated to increase while feature drop-
ping decreases. The value function quality decreases, but
only slightly. Bottom: Model parameters and Elo ratings for
each participant in each session of the learning experiment.
Both tree size and feature dropping correlate with Elo, but
value function quality does not.

Discussion
Limitations. Our model has three conceptual limitations.
First, although its parameters shift as participants acquire ex-
pertise, the model does not describe how these shifts arise
from their experience (their specific move choices and re-
wards). Instead, model parameters are stationary within each
session. Moreover, because model parameters are constant
while participants play against multiple AI opponents per ses-
sion, the model cannot capture strategic adaptations based on
an opponent’s game play. Finally, the model assumes that
people make decisions independently on every move, ignor-
ing potential long-term planning or caching of partial game
trees between moves. We make these assumptions out of ne-
cessity, because parameter inference is already challenging.
Relation with chess literature. Contrary to the chess
literature, in which the superior pattern recognition of
chess experts is evident from board reconstruction experi-

1258



ments (Chase & Simon, 1973) and eye movements (Reingold,
Charness, Pomplun, & Stampe, 2001), we find no changes in
value function quality with expertise or individual skill dif-
ferences. Stronger players might use features outside our
model space, and the lack of correlation could be a false nega-
tive. Alternatively, perhaps chess and 4-in-a-row are qualita-
tively different domains of expertise. Chess contains many
non-obvious features (pawn structure, the bishop pair) or
non-obvious feature weights (bishops and knights are equally
strong). By contrast, in our task, people’s intuitive priors
(three-in-a-row is good) happen to be correct.

Our finding of increased tree search with longer time con-
trols is consistent with chess studies that conceptualize pat-
tern recognition and tree search as fast and slow processes,
respectively (Chabris & Hearst, 2003). However, the strong
dependence between expertise and tree search is unexpected.
We first investigate whether this effect could have arisen from
incorrect model assumptions. Specifically, players may use
unmodeled features, stronger players may assign those fea-
tures higher weights, and those feature weights may trade
off with additional tree search in our model. However, by
analyzing parameter estimates in lesion models, we find no
such trade-offs. Therefore, our results reflect differences be-
tween 4-in-a-row and chess, or a methodological improve-
ment. Conclusions about tree search in chess derive almost
solely from verbal reports, whereas we use the more princi-
pled method of parameter inference in a behavioral model.

Conclusion
We built a computational model that predicts people’s choices
in a two-player board game. The model posits three compu-
tational principles for sequential decision-making: a feature-
based evaluation function, attentional oversights and tree
search. All three components are necessary to explain par-
ticipants’ behavior, but the data does not constrain details of
their implementation such as the order by which nodes are
visited during search, or how long the search process contin-
ues before players finalize their decision.

The model generalizes to predict choices in a two-
alternative forced-choice task and a board evaluation task.
This suggests that the model doesn’t just fit a mapping from
boards to moves, but that it captures aspects of the compu-
tational process that underlies decision-making in all three
tasks. Furthermore, the feature drop rate and tree size change
in predictable ways when we expose participants to manipula-
tions in time pressure and experience. These changes account
for participants’ task performance, suggesting that these spe-
cific parameters reflect some task-relevant characteristic of
participants’ cognitive process. Furthermore, these two be-
havioral characteristics are dissociable, since in the time pres-
sure experiment, both tree size and feature dropping increase
across conditions, whereas in the learning experiment, tree
size increases while feature dropping decreases. In the fu-
ture, we aim to further support our model as a description of
the computational process underlying people’s move choices

by using it to predict response times and eye movements.
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