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Abstract 

Language is often depicted as the sine qua non of mathematical 
thinking, a view buttressed by findings of language-of-training 
effects among bilinguals. These findings, however, have been 
limited to studies of arithmetic. Nothing is known about the 
potential influence of language on the ability to learn rules 
about the relations among variables (e.g., algebra). To test 
whether arithmetic and algebraic thinking differ, Chinese-
English bilinguals were trained to solve arithmetic and algebra 
problems in either Chinese or English and then tested on new 
and old problems in both languages. For arithmetic problems, 
solution times were always longer for English than Chinese; in 
both languages, solution times dropped during training; after 
training, solution times continued to drop for old problems, but 
returned to pre-training levels for new problems. In contrast, 
for algebra problems, solution times did not differ across 
language; solution times dropped during training; after 
training, gains in speed were preserved for both old and new 
problems. These findings suggest that the contribution of 
language to mathematical thinking may be limited to the areas 
of mathematics that are learned by rote and not by rule. 

Keywords: language; arithmetic; algebra; mathematical 
thinking 

Introduction 
In language acquisition, there is a classic distinction between 
learning by rote versus learning by rule (Berko, 1958; 
MacWhinney, 1974; Marcus, Vijayan, Ran, & Vishton, 
1999). Rote memorization, for example, is needed to learn the 
simple past tense of irregular verbs such as “put”, “see” and 
“go”. These exemplars generalize narrowly (if at all), such 
that learning the past tense of “put” does not generalize to the 
past tense of “see”. In contrast, the simple past tense of 
regular verbs can be learned by rule (e.g., stem+ed) to easily 
generate “played”, “typed”, and “listened”. Once the rule for 
regulars is acquired in childhood, the rule generalizes so 
freely that children often overgeneralize it to irregulars that 
they had previously been inflecting correctly.  

The rote versus rule distinction also seems to play an 
important role in math learning. Although addition and 
multiplication could be learned (in principle) by applying 
Peano axioms, the typical child learns that six times eight 
equals forty-eight based on rote memorization of the 
multiplication table. Thus, a child who learns that two times 
two equals four fails to generalize the axioms that would lead 
to knowledge that six times eight is forty-eight. In contrast, 
the knowledge that six times eight equals eight times six is 

based on the commutative law a·b=b·a. And, once learned, 
the law generalizes to all numbers being added or multiplied.  

Although there remains a contentious debate about the 
reality of abstract rules in language learning (e.g., Marcus, 
2003; McClelland & Patterson, 2002; Pinker, 1999), we 
argue that the rote vs. rule distinction is useful for 
understanding the role of language in mathematical thinking. 
Theoretically, this issue is broadly important in cognitive 
science, arising in such disparate issues as whether thoughts 
can be separable from the words we use for them, whether 
the human capacity for mathematics derives from our 
acquisition of a natural language, and whether some 
languages enable thoughts that are unique to their native 
speakers. Practically, it can have educational implications too 
for the merits of bilingual versus monolingual education. 

One prominent view is that language enhances an evolved, 
approximate sense of number to enable exact mathematical 
thinking about large numbers (Dehaene, Spelke, Pinel, 
Stanescu, & Tsivkin, 1999; Spelke & Tsivkin, 2001). In 
experiments conducted by Spelke and Tsivkin (2001), 8 
Russian-English bilinguals were trained on exact and 
approximate arithmetic problems in each of Russian and 
English and then tested on both tasks in both languages. The 
results showed that participants retrieved the answers to exact 
arithmetic problems faster in the language used during 
training sessions. In contrast, participants solved approximate 
arithmetic problems with equal efficiency in both the trained 
and untrained languages. In other words, they found a 
language-of-training effect when performing exact as 
opposed to approximate calculations. 

One conclusion that might be drawn from such findings is 
that natural language is the medium of any mathematical 
representation (such as large numbers) that transcend the 
limits of the approximate number system. As Spelke writes, 
“Human knowledge of number appears to be quintessentially 
abstract. The concept ‘seven’ appears to transcend any of the 
particular sets of seven entities that a person enumerates, the 
particular situations in which she enumerates them, and (one 
would think) the particular language in which she expresses 
this enumeration. However, our findings suggest that ‘seven’ 
is a language-dependent concept, distinct from the Russian 
‘sem’, or the French ‘sept’” (Spelke & Tsivkin, 2001, p81). 
Studies with Amazon indigene tribes that possess only a 
limited vocabulary for numbers (Frank et al., 2008; Gordon, 
2004; Pica, Lemer, Izard, & Dehaene, 2004) and functional 
imaging studies finding a dissociation between dependence 
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of exact and approximate computations on language-related 
circuits (Dehaene et al., 1999; Venkatraman, Siong, Chee, & 
Ansari, 2006) also provide supporting evidence for this view. 

However, an alternative interpretation is to consider the 
role of language in mathematical thinking in terms of rote vs. 
rule learning. If arithmetic (or the meaning of number words) 
is learned by rote and stored in associative memory, then any 
aspect of the learning context (including language of 
instruction) would be expected to facilitate recall. In contrast, 
aspects of mathematics that are rule-based and not stored 
item-by-item in associative memory would be less subject to 
encoding specificity. On this view, rote-based mathematical 
thinking, such as arithmetic, involves the memorization of 
specific number-number associations, generalizes quite 
narrowly, follows the principle of encoding specificity 
(Tulving & Thomson, 1973), and thus language dependence. 
In contrast, rule-based mathematics, such as learning 
relations among algebraic variables, permits free 
generalization and is thus language independent. 

The Current Study 
In this paper, we tested our alternative interpretation by 
performing a near replication of Spelke and Tsivkin (2001)’s 
study. Specifically, we trained Chinese-English bilinguals 
(native language Chinese) to solve a series of arithmetic and 
algebra problems over a two-day period either in English or 
Chinese and then tested them on both trained and novel 
arithmetic and algebra problems in both of the two languages 
on a third day. If only rote-based mathematical thinking were 
language dependent, participants would be expected to solve 
arithmetic problems faster in Chinese than English, and 
solution times would be expected to drop over training 
period, but return to pre-training levels for novel problems in 
the testing period. In contrast, for algebra problems, 
participants would be expected to solve them with equal 
speed in both languages, and solution times would be 
expected to drop over training, remain fast during the testing 
period, and be equally fast for the old and new problems. 

Further, to verify that what was learned in solving algebra 
problems were rules – i.e., relations among variables – 
(e.g., · + · ) and not rote sequences of symbols, answers 
contained a mixture of foils that either preserved or violated 
the sequence of relations. In just this case, rule-violating foils 
(e.g., A·B+A+C or A+B+A·C) would be expected to be 
rejected faster than rule-preserving foils (e.g., A·B+B·C). 

Methods 

Participants 
Participants were 40 Chinese-English bilinguals (26 
females), ranging in age from 18 to 35 years (M=23.04 years, 
SD=3.83 years). Participants were recruited from 
undergraduate and graduate students enrolled at The Ohio 
State University. All participants were native speakers of 
Chinese, attended elementary and high school in China, 
spoke English fluently (but not at native levels), and were 
comfortable conversing and reading both Chinese and  

 
Figure 1: Exemplars of the stimulus display used in different 
trial types. 
 
English. The university requires applicants with English as a 
second language to score at least 79 on the TOEFL (iBT), or 
at least 82 on the MELAB, or at least a 6.5 on the IELTS. 
These criteria imply English skills sufficient to successfully 
complete a university degree entirely in English. 

Tasks and Materials 
The experiment was conducted on a 13-inch MacBook Air 
laptop, with all the tasks administered using a custom 
MATLAB program. On each trial of the arithmetic and 
algebra tasks, one problem was shown in numerical words 
either in Chinese or English, with two candidate answers 
presented below (Figure 1). Participants were asked to select 
the correct answer by pressing the “up arrow” or the “down 
arrow” key. For the stimuli in both Chinese and English on 
each task, all questions appeared in Geneva font size 44 and 
answers appeared in Geneva font size 27. The displays in the 
two languages on each were designed to be as similar as 
possible in size and layout. 

For arithmetic task, 12 exact multiplication problems were 
presented, with the first factor ranging from 12 to 28, the 
second factor ranging from 3 to 9, and the candidate answers 
ranging from 62 to 146. The alternative answer to the correct 
one was a number that was 10 larger or smaller. All the 
problems and answers were the same in the two languages. 

For algebra task, 12 algebraic multiplication problems 
were presented, with the first factor a letter (e.g., A), the 
second factor a sum of two letters (e.g., B+C). The correct 
answer was the one following the distributive law (e.g., 
A·B+A·C). And the alternative answer was either the one 
with the rule-preserving operands (e.g., A·B+B·C) or with 
the rule-violating operands (e.g., A·B+A+C or A+B+A·C). 
To create unique sets of items, different letters were used in 
English and Chinese versions of the algebra task. 

Design 
The design was similar to that used by Spelke and Tsivkin 
(2001). Each participant was given a two-day training session 
and a one-day test session. In the training session, participants 
were randomly divided into two groups with one group 
performing the arithmetic task in Chinese and the algebraic 
task in English and the second group performing the  

ChineseEnglish

Arithmetic

Algebra

What is the product of twenty-one and five?

One hundred five 
One hundred fifteen 

ԫ܈ӞӨԲጱԙᑌฎग़੝Ҙ

ӞጯᵭԲ

ӞጯӞ܈Բ

What is the product of B and the sum of E + X?

B · E + B · X
B · E + B + X

M Ө G + H ጱ޾ጱԙᑌฎग़੝?

M · G + M · H
M · G + M + H
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Figure 2: Response latencies on each type of problem and in 
each language over the 3-day period. Dashed lines=new; 
solid lines=old; black=trained language; orange=untrained 
language. 
 
arithmetic task in English and the algebraic task in Chinese. 
In the test session, all participants were given both tasks and 
in both languages. The order of languages in both training 
and test sessions were counterbalanced across participants. 

In each training session, each task consisted of 6 repetitions 
of each of the 12 different problems, for a total of 72 trials 
per task. In the test session, each task consisted of 6 trained 
problems and 6 untrained problems. Each of the 12 problems 
was presented twice, for a total of 24 trials per task in the test 
session. Problems in each task were presented in a random 
order and the correct answer appeared on the top and bottom 
with equal frequency. 

Procedure 
Before each task, experimenter conversed with the 
participant in the language to be used for the task. To re-
accustom them to working with the corresponding language, 
immediately prior to each task in English or Chinese, 
participants were asked to read online news in that language 
for two minutes. 

In the training sessions, each task began with instructions 
specific to that task and with example problems presented in 
that trained language. The first trial was showed up by 
participants pressing the space bar, and remained on the 
computer screen until the participant pressed a response key 
indicating whether the top answer or the bottom one was 
correct. Immediately after that, a feedback specifying 
whether the response was correct or incorrect appeared on the 
screen and remained for 600ms. If no response was made 
within 10s, a third feedback appeared indicating that the trial 
had timed out. The next trial began immediately after the 
disappearing of the feedback. Throughout the training 
sessions, participants were encouraged to respond efficiently, 
with equal emphasis on speed and accuracy. 

The procedure for each task in the test session was identical 
to that in the training sessions, except that no specific 
examples were given to explain the task in the instruction. 

 
 

 
Figure 3: Accuracy on each type of problem and in each 
language over the 3-day period. Dashed lines=new; solid 
lines=old; black=trained language; orange=untrained 
language. 
 

Results 
Results were organized in three sections. In the first section, 
we examined the training effects for both arithmetic and 
algebra tasks. In the next section, we examined the 
performance for arithmetic and algebra tasks in the testing 
session. In the final section, we examined differences 
between rule-violating and -preserving operands. Figure 2 
and Figure 3 present the mean response latencies and the 
accuracy for each of the tasks and languages during the 2-day 
training period and the third-day testing period. 

1. Training led to faster and more accurate 
responses for both arithmetic and algebra tasks, 
but the effect of language on speed and accuracy 
was unique to arithmetic. 
We first analyzed training session data for arithmetic and 
algebra tasks. Reaction times (RT) were analyzed for all trials 
on which a subject gave the correct response within the 
allowed 10s period. A generalized linear mixed-effect model 
(GLMM) was conducted, with training day, training 
language, task, and all interactions as fixed effects, and 
subjects and trials as random effects. As expected, there were 
significant main effects of training day, b=-.33, t(42)=-9.80, 
p<.001, task, b=.72, t(10700)=62.60, p<.001, and training 
language, b=-.37, t(10700)=-32.38, p<.001. Also, there was a 
significant interaction of task and training language, b=-.37, 
t(38)=-4.61, p<.001, indicating that participants solved 
arithmetic problems faster in Chinese than in English 
(2688.17 vs. 4166.49ms) but solved algebra problems with 
nearly equal speed in Chinese and English (1992.27 vs. 
1988.49ms). An interaction of task and the training day, 
b=-.03, t(10700)=2.73, p<.01, indicated that although 
training helped lower RT for the second day for both 
arithmetic and algebra tasks, the decrease was lower for the 
arithmetic (3680.03ms on day1 vs. 3105.20ms on day2) than 
algebra task (2347.62ms on day1 vs. 1640.02ms on day2). No 
other effects were found. 
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Figure 4: Response latencies of rule-rejecting foils and rule-preserving foils on algebra problems in each language over the 3-
day period. Error bars indicate standard error. 
 

Accuracy for arithmetic and algebra tasks were analyzed in 
a similar way except using a mixed logit model (GLMM for 
binomially distributed outcomes). There were main effects of 
training day, b=.17, z=2.72, p<.01, task, b=-.37, z=-8.16, 
p<.001, and training language, b=.28, z=6.17, p<.001. An 
interaction of task and training language, b=.35, z=3.48, 
p<.001, was found, indicating that participants solved 
arithmetic problems more accurately in Chinese than in 
English (96.18% vs. 87.50%) but solved algebra problems 
with nearly equal accuracy in Chinese and English (95.94% 
vs. 96.70%). An interaction of task and training day, b=-.15, 
z=-3.35, p<.001, indicated accuracy was higher during the 
second than the first day of training for the algebra task but 
not arithmetic task (95.38% on day1 vs. 97.26% on day2 for 
algebra task; 91.77% on day1 vs. 91.91% on day2 for 
arithmetic task). Day 1 results are important because they 
suggest that any pre-existing advantage for the algebra 
problems were negligible. 

2. Dissociation between arithmetic and algebra 
tasks in the test session. 
We next conducted a generalized linear mixed effect model 
(GLMM) on response latencies for the test problems, with the 
task, test language, problem novelty, and interactions as fixed 
effects, and subjects and trials as random effects. Results 
showed a main effect of task, b=1.02, t(146)=19.59, p<.001, 
language, b=-.42 , t(146)=-8.06, p<.001, and problem 
novelty, b=-.28, t(24)=-5.67, p<.001. An interaction between 
task and language, b=-.41, t(146)=-7.96, p<.001, indicated 
that participants solved arithmetic problems faster in Chinese 
than English (2799.76 vs. 4419.03ms) but solved algebra 
problems with nearly equal speed in Chinese and English 
(1618.03 vs. 1628.19ms). An interaction between task and 
problem novelty, b=-.25, t(74)=-8.50, p<.001, indicated that 
participants answered old problems more rapidly than new 
problems for both arithmetic and algebra tasks, but the 
difference was greater for the arithmetic than algebra task 
(986.11 vs. 57.89ms). No other effects were found. 

Accuracy for the tasks in the test session were analyzed in 
the similar way except using a mixed logit model. Similar to 

 
the results of latencies, results showed a main effect of task, 
b=-.55, z=-6.88, p<.001, and problem novelty, b=.39, z=2.77, 
p<.01. An interaction between task and problem novelty, 
b=.18, z=2.26, p<.05, indicated that participants answered old 
arithmetic problems more accurately than new ones (95.10% 
vs. 86.04%), but solved new and old algebra problems with 
nearly equal accuracy (97.60% vs. 96.36%). No other 
significant effects were found. 

3. Micro-rules were learned through algebra tasks. 
Results above suggest that subjects were not just memorizing 
strings of letters and operations when solving algebra 
problems. How, then, did they solve the problems? One 
possibility is that subjects encoded a partial structure of the 
trained items. For example, subjects might learn a structure 
of a subset of operations (e.g., ·+·) while solving the algebra 
problems. If this were the case, rule-violating foils (e.g., 
A·B+A+C or A+B+A·C) would be expected to rejected 
faster than the rule-preserving foils (e.g., A·B+B·C) when 
subjects solving algebra problems. 

As Figure 4 shows, participants more quickly solved 
algebra problems with rule-violating than rule-preserving 
operands for each day of learning, for both new and old 
problems, and in both languages. The latency findings were 
confirmed by a generalized linear mixed effect model 
(GLMM) on training data and test data. 

In the model for the training data, the language (English vs. 
Chinese), training day (day1 vs. day2), alternative to the 
correct answer (rule-violating vs. rule-preserving foils), the 
three two-way interactions, and the one three-way interaction 
were fixed effects, and subjects and trials were random 
effects. Results revealed a main effect of alternative choice, 
b=.18, t(35)=6.97, p<.001; a main effect of training day, b=-
.36, t(44)=-10.68, p<.001; and an interaction of alternative 
choice and training day, b=-.04, t(46)=-2.11, p<.05, 
indicating the difference on response latencies for answering 
problems with rule-violating foils versus rule-preserving foils 
was greater on day1 than day2 (438.81 vs. 260.68ms).  

In the model for the test data, the language (English vs. 
Chinese), problem novelty (old vs. new), alternative to the 

Day 1
R

T
 (

m
s)

1,000

1,500

2,000

2,500

3,000

English Chinese

Day 2

English Chinese

Day 3 (old)

English Chinese

Rule-violating foils (·++ or ++·)
Rule-preserving foils (·+·)

Day 3 (new)

English Chinese
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correct answer (rule-violating foils vs. rule-preserving foils), 
the three two-way interactions, and the one three-way 
interaction were fixed effects, and subjects and trials were 
random effects. Results revealed only a main effect of 
alternative choice, b=.10, t(25)=3.47, p<.01. 

Discussion 
Consistent with the rote/rule distinction, our results showed a 
marked contrast between arithmetic and algebra learning. As 
in Spelke and Tsivkin (2001)'s experiments, bilingual 
subjects retrieved answers to rote-based arithmetic problems 
more quickly in their native language than in their second 
language, and old arithmetic problems were solved more 
quickly than new ones. Although we did not replicate the 
language-of-training advantage found in Spelke and Tsivkin 
(2001)’s study, full language-of-training effects are typically 
masked when native languages are too dominant in retrieval 
(Campbell, 2005; French-Mestre & Vaid, 1993; Kolers, 
1968; Marsh & Maki, 1976; McClain & Huang, 1982). 

In contrast, our results showed that when the same subjects 
learned rule-based algebra problems, they retrieved those 
problems with equal efficiency in their two languages, and 
this learning could generalize to the novel problems in the 
testing period. These results suggest that natural language 
only contributes to rote-based arithmetic learning but not to 
rule-based algebraic learning.  

Our results are broadly consistent with neuropsychological 
evidence that patients with severe aphasia are able to 
correctly solve algebraic expressions despite showing 
impairments in language ability (Klessinger, Szczerbinski, & 
Varley, 2007), as well as the neuroimaging findings of double 
neural dissociation of processing algebraic operations and the 
syntax of language (Monti, Parsons, & Osherson, 2012). 

Furthermore, our results showed algebra learning relies on 
a series of micro-rules, which is the structure of relations 
among the operations. And these micro-rules can be 
generalized to new items that do not overlap with the items 
that appeared in training. The nature of these micro-rules 
could be a visual perception of the structure, which has been 
suggested to impact rule application in algebraic reasoning 
(Landy & Goldstone, 2007; Landy, Jones, & Goldstone, 
2008; Marghetis, Landy, & Goldstone, 2016; Schneider, 
Maruyama, Dehaene, & Sigman, 2012). 

We close by discussing three implications provided by this 
research. First, what might be the role of language in 
mathematical thinking? Second, what might be the nature of 
rule-based mathematical thinking? Third, what might be the 
educational implications of the present findings? 

1. Revisiting the role of language in mathematical 
thinking 
Whether natural language does (Bloom, 1994; Carey, 2001, 
2009; Lakoff & Nunez, 2000; Nunez & Marghetis, 2014; 
Paik & Mix, 2003; Spelke & Tsivkin, 2001) or does not 
(Brannon, 2005; Gelman & Butterworth, 2005) play a role in 
mathematical thinking is a hotly-debated issue. Although a 
full review of the subtle differences amongst these views (and 

their methodological assumptions) is not possible here, we 
should note that none of these accounts provides a memory 
systems-based theory predicting a dissociation between 
arithmetic and algebra (though see Schneider et al., 2012). 
Moreover, our theory that language effects are limited to rote-
based learning generalizes beyond the arithmetic/algebra 
divide. In addition to arithmetic, verbal-associative learning 
plays an important role in the acquisition of integer and 
fraction names, which also seem to exhibit language effects 
(Frank et al., 2008; Paik & Mix, 2003). Further, in addition 
to the distributive law, mathematics covers other non-
algebraic, rule-governed categories (e.g, parity), where our 
theory could be tested.  

2. The nature of rule-based mathematical thinking 
The results of our study suggest that algebra learning does not 
depend on the particular variables involved but on the 
structure of relations among the variables. But what is the 
nature of this representation?  

One possibility is that the spatial properties of physical 
layouts are encoded. This was suggested by Landy et al., 
(2008)’s study, in which they manipulated the visual layouts 
of algebraic equations and asked subjects to judge whether 
the equations valid or not. And they found that the physical 
spacing of algebraic equations impacted subjects’ 
performance, suggesting the role of visual perception in the 
rule application. In a follow-up study by Schneider et al. 
(2012), they investigated eye movement during subjects 
solving arithmetic problems with nested syntactic structure, 
and found the procedural rules biased the typical left-to-right 
sequential processing in language. These studies point to the 
possibility that what is learned in algebra might be language-
independent by virtue of a dissociation between spatial and 
verbal learning mechanisms rather than by a dissociation 
between rote- and rule-based learning. An interesting test of 
this hypothesis would be the acquisition of algebraic rules in 
Chinese by monolingual English-speakers or in English by 
monolingual Chinese-speakers. In both cases, the spatial 
layout of the distributive law is preserved, but in the case of 
monolinguals, the mathematical meaning of the expressions 
would be unintelligible. 

3. Implication in education 
The results of our study also have practical implications in 
education. In many parts of the world, more and more schools 
provide bilingual education to students. Does bilingual 
education have more advantages over monolingual 
education? Our study suggests that the evaluation of 
monolingual versus bilingual education is complicated and 
the relative merits will likely depend on whether content must 
be learned by rote or by rule. 

On the one hand, the present study provides evidence that 
rote-based learning relies on a specific language to encode 
and retrieve. Therefore, if a child in a bilingual environment 
is expected to retrieve ‘seven times five equals thirty-five’ 
and ‘七乘以五等于三十五’, they will likely need to learn 
each fact in each language to reach equal facility. As a result, 
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bilingual instruction seems likely to present a heavier burden 
than monolingual instruction (though obviously this cost may 
be worthwhile if native language instruction improves 
understanding). On the other hand, the present study provides 
evidence that algebra learning shows language independence, 
suggesting that the choice of bilingual versus monolingual 
instruction can be made on the basis of considerations other 
than speed of retrieval. 
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