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Abstract 

Prior evidence suggests that category learning can occur 
implicitly by detecting regular co-occurrences of features 
within categories. Less studied is whether regularities wherein 
category membership predicts other events or actions also 
foster category learning. Moreover, we know little about 
whether, and to what degree, exposure to these regularities 
facilitates subsequent supervised learning. Here, participants 
were pre-exposed to exemplars from two categories during a 
cover task, while uninformed of their category membership. 
Pre-exposure occurred under conditions in which category 
membership did (Predictive Mapping) or did not (Mere 
Exposure) predict task events to which participants responded.  
Baseline participants completed the same task with category-
irrelevant stimuli. Subsequently, all participants were taught 
the categories (using pre-exposure exemplars) under explicit 
supervision. Whereas neither Predictive Mapping nor Mere 
Exposure influenced cover task performance (vs. Baseline), 
Predictive Mapping substantially improved subsequent 
supervised category learning. These findings point to latent 
category learning given pre-exposure to Predictive Mapping 
regularities. 

Keywords: category learning, latent learning, implicit 
learning, supervision 

Introduction 

Learning to group distinct perceptual experiences into 

categories is a fundamental cognitive ability that manifests 

itself in perception, memory, reasoning, and language. Much 

of research on category learning conducted to date has 

investigated how we accomplish this feat under explicit 

supervision conditions (e.g., Ashby, Maddox, & Bohil, 2002; 

Smith et al., 2014). For example, participants are often 

informed that the stimuli they will experience belong to 

categories whose composition they must try to determine, 

often provided with category labels, and given explicit 

feedback following their categorization decisions. During 

real-world category learning, access to such explicit 

information is often very limited. In the absence of explicit 

supervision, how does implicit category learning unfold? 

Moreover, does implicit learning (or even mere exposure to 

stimuli) help learners capitalize on the relatively small 

amount of explicit category information they may receive? 

Here, we investigate how exposure to to-be-learned stimuli 

influence category learning, with an emphasis on whether 

such exposure heightens the readiness with which categories 

may be learned under explicit supervision. 

Category Membership and Perceptual Features 

In comparison to research on category learning under 

explicit, supervised conditions, the body of research 

conducted on implicit or incidental category learning is 

relatively small, and has focused primarily on learning that is 

driven by sensitivity to regularities in the perceptual 

characteristics of category members. Moreover, this research 

has treated learning from such regularities as entirely separate 

from learning from explicit category-relevant information.  

Research in this field is motivated by the observation that, 

in many naturalistic categories, members of the same 

category often resemble each other more strongly than they 

resemble members of other categories (Rosch, 1975). Such 

family resemblances may be thought of as resulting from 

reliable co-occurrences of perceptual features with each other 

within exemplars from the same category, but not with 

features that occur in exemplars from other categories. As an 

example, consider the category of “birds”: In this category, 

perceptual features such as feathers, wings, and beaks 

reliably co-occur, and rarely occur with features 

characteristic of other categories, such as fur.  

Evidence from research in infants (Quinn & Johnson, 

2000; Younger & Cohen, 1983), children (Kloos & Sloutsky, 

2008) and adults (Clapper & Bower, 1994; Nelson, 1984) 

suggests that a sensitivity to these perceptual feature 

regularities contributes to category learning from an early 

age. Moreover, learners who are given implicit or incidental 

exposure to category exemplars are more likely to learn 

family resemblance categories, in contrast to learners given 

explicit supervision, who are more likely to learn rule-based 

categories. (Love, 2002; Nelson, 1984). Accordingly, in 

many accounts of implicit category learning, sensitivity to 

such regular co-occurrences of perceptual features plays a 

key role (Quinn & Eimas, 1997; Sloutsky, 2010; Smith & 

Heise, 1992). In prior empirical research, implicit, 

unsupervised learning from perceptual feature regularities 

has been treated as distinct from learning under explicit 

supervision. The possibility that such implicit learning might 

help learners take advantage of information about category 

membership provided by explicit supervision remains largely 
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unexplored (though see Folstein, Gauthier, & Palmeri, 2010 

for an investigation with equivocal results). 

Category Membership and Prediction 

Beyond regularities in the features of category exemplars 

themselves, the environment may also convey regularities 

with which category membership predicts other perceptual 

experiences or goal-related actions. With respect to 

perceptual experiences, an exemplar’s category membership 

may predict the location in which it is seen (e.g., dogs 

typically appear on the ground, whereas birds often appear in 

the sky), the other entities with which it is seen (e.g., a dog is 

often seen with a leash), the type of motion it will exhibit 

(e.g., birds often fly, whereas dogs do not), the words that are 

heard when it is seen (e.g., the words “dog”, “furry”, etc. are 

more likely to be heard when seeing a dog than a bird, even 

in the absence of explicit labeling events), and so on. 

Similarly, with respect to goal-related actions, an exemplar’s 

category membership may predict whether it is an entity to 

approach or avoid, the appropriate way in which to interact 

with it (e.g., a nail should be hammered, whereas a screw 

should be turned with a screwdriver), and so on. Importantly, 

these prediction regularities are often implicit: We typically 

do not receive explicit feedback when we make a correct or 

incorrect prediction. Instead, when predicting a perceptual 

experience, we might see what we expect or be surprised, and 

when predicting a goal-related action, we might accomplish 

or fail at our goal.  Both the possibility that such implicit 

prediction regularities contribute to category learning, and 

how category learning that is fostered by prediction 

regularities unfolds, remain relatively unstudied. 

To our knowledge, the only research in which implicit, 

prediction-driven category learning has been studied to date 

consists of a handful of studies conducted in the auditory 

domain (e.g., Gabay, Dick, Zevin, & Holt, 2015). In these 

studies, participants completed a task in which they made 

different responses to visual stimuli that were different from 

each other either in appearance, or in the location in which 

they appeared. For example, in one version of this task 

(Gabay et al., 2015), participants indicated in which of 4 

possible locations an X appeared, but were not given 

feedback about whether they responded correctly. Critically, 

the different visual stimuli were each preceded by task-

irrelevant exemplars from the same number of acoustic or 

speech sound categories. The absence of corrective feedback 

during the task rendered the predictive mapping between 

auditory category and perceptual events/visuomotor 

responses implicit. Across studies, when the category 

membership of the sounds predicted the location or identity 

of the stimulus to which participants respond, participants 

showed evidence of having learned both this predictive 

mapping, and the relevant auditory categories. Moreover, the 

category learning that took place in versions of this paradigm 

generalized to novel category exemplars.  

The success with which category learning took place in 

these studies provides initial evidence that predictive 

relationships between category membership and perceptual 

events/goal-related actions fosters category learning. 

However, this evidence consists of a small number of studies 

conducted within the auditory domain, which recruits 

different brain systems (Ley et al., 2012; Seger & Miller, 

2010) and contains qualitatively different categories (e.g., 

ones that are temporally dynamic) from those in the otherwise 

more extensively studied visual domain. Moreover, as in 

research on implicit category learning from perceptual 

feature regularities, this line of research has not investigated 

whether implicit learning from prediction regularities 

facilitates subsequent learning from explicit supervision. 

Present Experiment 

As described above, category learning may be facilitated 

implicitly by sensitivities both to the reliable co-occurrence 

of perceptual features in category exemplars, and the 

reliability with which category membership predicts 

perceptual events or goal-directed actions. However, the 

effects on category learning of the latter are comparatively 

unstudied. Moreover, we know little about whether either 

sensitivity improves the readiness with which categories are 

learned under explicit supervision. These gaps in our current 

understanding of category learning led to our two aims. First, 

we aimed to compare category learning under conditions in 

which participants were either only exposed to category-

relevant perceptual feature co-occurrences, or additionally 

exposed to regularities in which category membership 

predicted visual events and goal-related actions. Second, we 

aimed to test whether learning under either condition 

facilitated subsequent supervised category learning. 

To accomplish these aims, we exposed participants to 

stimuli that, unbeknownst to them, were members of two 

categories within which perceptual features reliably co-

occurred. We accomplished this exposure in the context of a 

speeded cover task, which we manipulated such that the 

category membership of an exemplar did or did not predict 

task events and appropriate responses. Specifically, in the 

cover task, participants were given a short period of time 

(<500ms) during which to indicate whether a stimulus that 

first appeared in a central location had then “jumped” to the 

left or right. In the “Predictive Mapping” condition, category 

membership perfectly predicted the location to which stimuli 

jumped, whereas in the “Mere Exposure” condition, category 

membership and jump location were unrelated. As a control, 

participants in a Baseline condition completed the same task 

with stimuli unrelated to the categories in the former two 

conditions. Importantly, participants were not asked to 

predict where the stimulus jumped, nor were they given 

explicit corrective feedback about whether their responses 

were accurate (they were only informed when they had failed 

to respond within the time allowance given). Accordingly, 

the predictive regularities in the Predictive Mapping 

condition were incidental to task performance.  After 

completing the cover task, all participants then were taught 

the two categories under traditional explicit supervised 

conditions with corrective feedback.  
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Using this approach, we investigated: 1) Whether 

participants showed evidence of learning the Predictive 

Mapping, as indexed by more rapid improvements in RT over 

the course of the cover task, and 2) Whether Mere Exposure, 

Predictive Mapping, or both facilitated subsequent 

supervised category learning. 

Method 

Participants 

Participants were 72 adults (Mage=34.21 SDage=11.89) 

recruited from Amazon Mechanical Turk who received $1 for 

participation for this ~15min study. Participants were 

randomly assigned to one of three conditions (N=24): 

Predictive Mapping, Mere Exposure, and Baseline.  

Stimuli 

Category Exemplars The primary stimuli used in this 

experiment were exemplars from two categories: Flurps and 

Jalets. These exemplars were colorful images of “creatures” 

similar to those used in prior category learning research 

conducted by Deng and Sloutsky (e.g., Deng & Sloutsky, 

2012). Creatures were composed of 7 binary-valued features 

including a head, antennae, body, hands, feet, tail, and button. 

Category membership was based on a combination of 

deterministic and probabilistic features, such that each 

category had a family resemblance structure. Specifically, 

one feature (antennae) was perfectly associated with category 

membership, and therefore deterministic, whereas five were 

associated with membership in a given category in 80% of 

exemplars, and therefore probabilistic. The remaining feature 

occurred equally often in exemplars from both categories, 

and was therefore irrelevant to category membership. This 

category structure is summarized in Table 1.  

 

Baseline Exemplars An additional set of creatures dissimilar 

in appearance from the Category Exemplars were adapted 

from stimuli created by Badger and Shapiro (2012) for use in 

the Baseline Condition only. Like the Category Exemplars, 

these stimuli were composed of binary-valued features. 

Unlike the Category Exemplars, the set of Baseline 

Exemplars included all possible combinations of feature 

values, and was not divided into categories.  

Procedure 

Participants followed a link on Amazon Mechanical Turk to 

the experiment, which was presented using the Gorilla™ 

platform. During the experiment, participants proceeded 

through three phases: A Practice Phase, an Exposure Phase, 

and a Supervised Category Learning Phase. 

 

Practice Phase The purpose of the Practice Phase was to 

accustom participants to the task in the subsequent Exposure 

Phase (see below). The task in this phase was introduced as 

the “Color Jump Game”. A schematic of this task as used in 

both the Practice and Exposure Phases is provided in Fig. 1.  

In the task, participants watched a star that initially 

appeared on the center of the computer screen in between a 

red panel on the left, and a blue panel on the right. The star 

then disappeared, and reappeared on the left red panel or the 

right blue panel. Participants were instructed to hit the “q” 

key if the star reappeared on the left, and “p” if it reappeared 

on the right. Participants were informed that they would have 

only a short amount of time to respond, and that they would 

receive feedback indicating whether they were correct, 

incorrect, or too slow. (As noted below, corrective feedback 

was not provided in the Exposure Phase version of this task.) 

Participants then completed the task, which consisted of 20 

trials. The star reappeared equally often on the left and right, 

in a pseudorandomized order. The amount of time 

 
Fig 1: Color Jump Game schematic. Dotted boxes denote 

stimulus locations; “xxx” denotes feedback. 

 

Table 1: Category Structure 

 

                       Feature 

 Exemplar D P1 P2 P3 P4 P5 I 

Flurps E1 1 0 1 1 1 1 2 

 E2 1 0 1 1 1 1 3 

 E3 1 1 0 1 1 1 2 

 E4 1 1 0 1 1 1 3 

 E5 1 1 1 0 1 1 2 

 E6 1 1 1 0 1 1 3 

 E7 1 1 1 1 0 1 2 

 E8 1 1 1 1 0 1 3 

 E9 1 1 1 1 1 0 2 

 E10 1 1 1 1 1 0 3 

Jalets E1 0 1 0 0 0 0 2 

 E2 0 1 0 0 0 0 3 

 E3 0 0 1 0 0 0 2 

 E4 0 0 1 0 0 0 3 

 E5 0 0 0 1 0 0 2 

 E6 0 0 0 1 0 0 3 

 E7 0 0 0 0 1 0 2 

 E8 0 0 0 0 1 0 3 

 E9 0 0 0 0 0 1 2 

 E10 0 0 0 0 0 1 3 

Note: The “D” feature is deterministic, “P”s 1-5 are 

probabilistic, “I” is irrelevant. 
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participants had in which to respond after the star reappeared 

started at 500ms, then decreased in 25ms increments every 5 

trials such that the allowance for the last 5 trials was 425ms.  

 

Exposure Phase In this phase, participants continued to play 

the Color Jump Game. However, the star that appeared in the 

Practice Phase was replaced by: 1) Category Exemplars 

whose category membership perfectly predicted whether they 

reappeared on the left red or right blue panel in (Predictive 

Mapping Condition), 2) Category Exemplars whose category 

membership was unrelated to their reappearance locations 

(Mere Exposure Condition), or 3) Baseline Exemplars in the 

Baseline Condition. Participation in each of these conditions 

was randomly assigned between subjects. To keep any 

predictive mapping between category membership and 

reappearance location implicit, participants were only given 

feedback when they responded too slowly, but were not told 

whether their responses were correct or incorrect.  

In all conditions, participants completed 80 trials (8 blocks 

of 10 trials) of the Color Jump Game. To increase the 

potential speed and accuracy benefits of detecting any 

predictive mapping between category membership and 

reappearance location, the difficulty of the task was increased 

every two blocks by reducing the RT allowance. Specifically, 

the RT allowance began at 425ms, then decreased by 25ms 

every 2 blocks, such that the allowance was 350ms for the 

final 2 blocks. Participants were alerted to this reduction in 

RT allowance at the beginning of each block in which it 

occurred. The outcome measure of interest in this phase is the 

rate at which participants’ RTs for accurate trials improved. 

 

Supervised Category Learning Phase The purpose of this 

phase was to investigate how well participants in each of the 

conditions learned to classify the Category Exemplars into 

two categories under traditional supervised learning 

conditions. In this phase, participants in all conditions 

completed the same task with the same stimuli. First, 

participants were informed that they would be learning about 

two kinds of creatures: Flurps and Jalets. Participants were 

told that for each creature, they should identify whether they 

think it is a Flurp or Jalet using onscreen buttons, after which 

they would receive corrective feedback. 

Participants then proceeded through 30 trials of this task (3 

blocks of 10 trials each). On each trial, participants were 

presented with a Category Exemplar, and asked whether it 

was a Flurp or Jalet. After responding, participants received 

a message saying “That’s a [Flurp/Jalet]! preceded by a green 

checkmark if they had responded correctly, or a red X if they 

had responded incorrectly. The outcome measure of interest 

in this phase was participants’ accuracy at categorizing 

Category Exemplars over the course of the 3 blocks.  

Results 

Analyses were conducted in the R environment (R 

Development Core Team, 2008) using functions in base R, 

                                                           
1 Analysis of accuracy also yielded no condition differences. 

the lmer function for mixed effects regression from the lme4 

package (Bates, Maechler, Bolker, & Walker, 2015), and the 

Anova function for deriving F-statistics and p-values for 

regression models from the car package (Fox & Weisberg, 

2011).  

Exposure Phase Overall, RT decreased over the Exposure 

Phase. Specifically, in a mixed regression model with RT on 

accurate trials as the dependent variable, Trial Number as a 

fixed effect, and participant as a random effect, Trial Number 

had a significant, negative coefficient (β = -0.65 ms, SE = 

0.03, p < .0001). 

To test whether exposure to Category Exemplars in either 

the Predictive Mapping or Mere Exposure conditions 

concurrently influenced performance on the Color Jump 

Game during the Exposure phase, we fit regression models 

for each participant in which Trial Number predicted RT on 

accurate trials. We then used the regression coefficient for 

Trial Number as a measure of the rate of change in RT over 

the course of this phase. Finally, we analyzed whether rate of 

change in RT varied across the three conditions. To conduct 

this analysis, we fit a regression model in which Condition 

predicted rate of RT change. This model revealed no 

significant relationship between Condition and rate of RT 

change (F(2,69)=0.10, p=.90)1 (Fig. 2). 

Supervised Category Learning Phase The purpose of this 

phase was to test whether the success with which participants 

learned to categorize the Category Exemplars given explicit 

supervision varied according their preceding experience in 

the Exposure Phase. We therefore first tested whether 

participants in each condition were able to learn the 

categories under explicit supervision. We found that 

participants in the Predictive Mapping and Mere Exposure 

conditions achieved above-chance performance in Block 1 of 

the Supervised Category Learning Phase (both ps < .01); by 

Block 2, participants in all three conditions achieved above-

chance performance (all ps < .01).  

To investigate whether experience in the Exposure Phase 

influenced the degree to which participants successfully 

learned the categories, we took as our outcome variable the 

accuracy with which participants categorized Category 

Exemplars in each of the 30 trials in this phase, and tested 

whether accuracy varied with Condition (Predictive 

Mapping, Mere Exposure, and Baseline). Because the 30 

trials were organized into three blocks, over which 

categorization accuracy may improve, we also tested whether 

accuracy varied across blocks. Specifically we fit an omnibus 

mixed regression model with accuracy as the dependent 

variable, Condition, Block, and their interaction as fixed 

effects, and participant and trial number within a block as 

random effects. We then derived F-statistics and p-values for 

each of the fixed effects. This analysis revealed significant 

main effects of both Condition (F(2,69)=5.22, p=.008), and 

Block (F(1,2076)=20.82, p<.0001), which did not interact 

(p=.16) (see Fig. 2).  
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To further investigate these main effects, we compared 

each pair of Blocks or Conditions using three fixed effects 

models. These models included the same components as the 

omnibus model, but each used data from only one pair of 

Blocks or Conditions. The pairwise comparisons of Blocks 

revealed that Block 1 accuracy was significantly lower than 

in Blocks 2 or 3 (both ps < .01), but that accuracies in Blocks 

2 and 3 did not significantly differ (p=.22). More importantly, 

the pairwise comparisons of Conditions revealed that the 

Predictive Mapping condition exceeded both the Baseline 

(F(1,46)=8.51, p=.005) and Mere Exposure (F(1, 46)=6.55, 

p=.014) conditions. In contrast, accuracies in the Mere 

Exposure and Baseline conditions did not significantly differ 

(F(1,46)=.118, p=.733). In sum, participants in the Predictive 

Mapping condition learned the categories more successfully 

than either participants in the Mere Exposure or those in the 

Baseline conditions, whereas the success of category learning 

for participants in the latter two conditions did not differ. 

Discussion 

Prior evidence has revealed that exposure to regularities in 

which perceptual features co-occur in category exemplars can 

implicitly facilitate category learning. However, we know 

little about whether exposure to regularities in which 

category membership predicts other perceptual events or 

goal-directed actions can similarly facilitate category 

learning. Moreover, we know little about how either form of 

exposure may allow us to more readily learn categories under 

explicit supervision.  

In this experiment, we exposed participants to exemplars 

of two categories that possessed distinct perceptual feature 

co-occurrence regularities. This exposure took place within a 

cover task, under conditions in which category membership 

did (Predictive Mapping) or did not (Mere Exposure) predict 

task events to which participants responded. Importantly, this 

exposure was implicit: Participants were neither informed 

that the stimuli they viewed were members of two categories, 

nor alerted of any relationship between stimulus appearance 

and task events, or given corrective feedback about their 

responses to task events. For comparison, Baseline 

participants completed this task with other, non-categorized 

stimuli. Subsequently, all participants were taught the two 

categories under traditional, explicitly supervised conditions.  

 Although we found no variation across exposure 

conditions in performance on the cover task, participants who 

were exposed to the category exemplars under Predictive 

Mapping subsequently learned the categories under explicit 

supervision substantially more successfully than participants 

in either the Mere Exposure or Baseline conditions. In 

contrast, participants in the Mere Exposure condition were 

not measurably more accurate than those in the Baseline 

condition. These findings suggest that exposure to category 

exemplars under conditions in which category membership 

predicts other perceptual events and goal-directed actions 

improves the readiness with which categories are learned 

given explicit supervision. Exposure to predictive regularities 

may therefore promote latent learning (e.g., Kimble & 

BreMiller, 1981), in which such exposure promotes the 

formation of mental representations that render learners more 

receptive to explicit instruction.   

Open Questions 

The present experiment sets a foundation for further 

investigation into both the influence on category learning of 

category-relevant prediction regularities, and how exposure 

to category-relevant regularities may facilitate subsequent 

supervised category learning.  

One question to explore in future research is raised by the 

superiority of the Predictive Mapping condition during 

supervised category learning, despite the lack of condition 

effects during the Exposure Phase. Specifically, the 

superiority of supervised category learning in the Predictive 

Mapping condition suggests that participants were sensitive 

to the regularity with which category membership predicted 

Exposure Phase task events and appropriate responses. Such 

sensitivity could, in principle, have allowed participants to 

increasingly anticipate events in the Exposure Phase task, and 

therefore improve more rapidly than participants in the other 

conditions. However, we observed no such effect, as 

evidenced by comparable RT decreases across conditions in 

the Exposure Phase (the Color Jump Game). We therefore do 

 

 

Fig 2: RTs during Exposure Phase (top) and Accuracies 

during Supervised Category Learning Phase (bottom) 
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not have evidence of sensitivity to predictive regularities 

while they were being experienced. One possible explanation 

for the lack of condition differences during the Exposure 

Phase is that the rate at which we shortened the RT allowance 

in the Exposure Phase task pushed participants to the limit of 

the rate at which they were able to speed up. Future research 

might address this issue in multiple ways. For example, a 

future version of this experiment might include “guess” trials 

interspersed within the Exposure Phase, in which participants 

are asked to predict task events. Sensitivity to predictive 

regularities could therefore manifest as the gradual 

achievement of above-chance performance on guess trials in 

the Predictive Mapping, but not the Mere Exposure 

condition.  

Another key direction for future research is to illuminate 

the nature of what is learned via implicit sensitivity to 

category-relevant regularities. For example, does exposure to 

these regularities increase attention to category-relevant 

features, and away from those that are irrelevant?  

Conclusion 

In this experiment, we found that supervised category 

learning was facilitated when preceded by implicit exposure 

to exemplars from family resemblance categories under 

conditions in which category membership predicted other 

perceptual events and goal-directed actions. This facilitation 

occurred above and beyond the effect of mere exposure to the 

exemplars themselves. These findings point to implicit 

learning due to exposure to category-relevant predictive 

regularities that in turn helps learners capitalize on explicit 

information about category membership.   
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