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Abstract

The St. Petersburg paradox is a centuries-old philosophical
puzzle concerning a lottery with infinite expected payoff,
on which people are, nevertheless, willing to place only a
small bid. Despite many attempts and several proposals, no
generally-accepted resolution is yet at hand. In this work, we
present the first resource-rational process-level explanation of
this paradox, demonstrating that it can be accounted for by a
variant of normative expected-utility-maximization which ac-
knowledges cognitive limitations. Specifically, we show that
Nobandegani et al.’s (2018) metacognitively-rational model,
sample-based expected utility (SbEU), can account for major
experimental findings on this paradox. Crucially, our resolu-
tion is consistent with two empirically well-supported assump-
tions: (1) people use only a few samples in probabilistic judg-
ments and decision-making, and (2) people tend to overesti-
mate the probability of extreme events in their judgment.
Keywords: St. Petersburg Paradox; bounded rationality;
resource-rational process models; expected utility theory; in-
ference by sampling

1 Introduction
Originally proposed in 1738 by Daniel Bernoulli, the St. Pe-
tersburg paradox is a famous economic and philosophical
puzzle concerning a risky gamble on which people are asked
to place a bid. The gamble goes as follows: The house of-
fers to flip a coin until it comes up heads; the house pays $1 if
heads appears on the first trial (aka initial seed); otherwise the
payoff doubles each time tails appears, with this compound-
ing stopping and payment being given at the first heads. The
St. Petersburg gamble is outlined in Table 1.

Event

Payoff

H

$1

TH TTH

$2 $4

Trial 1 2 3 n

TT...TH
(n − 1) tails

$2(n−1)

Table 1: The St. Petersburg gamble. A fair coin is flipped
until the first heads appears. On the nth trial of the gamble,
corresponding to the event of having the first heads appear
on the nth coin flip, the house pays $2(n−1) to the bidder and
the game ends. The expected value (EV) of this gamble is
infinite: EV = $1× ( 1

2 )+ $2× ( 1
4 )+ $4× ( 1

8 )+ $8× ( 1
16 )+

$16× ( 1
32 )+ . . .= $ 1

2 +$ 1
2 +$ 1

2 +$ 1
2 +$ 1

2 + . . .=+∞.

Despite the expected value (EV) of the St. Petersburg gam-
ble being infinite (see Table 1), people are typically willing

to place only small bids on this gamble (e.g., Bottom, Bon-
tempo, & Holtgrave, 1989; Rivero, Holtgrave, Bontempo, &
Bottom, 1990; Kroll & Vogt, 2009; Cox, Sadiraj, & Vogt,
2009; Hayden & Platt, 2009). Under the normative stance
that people should prefer gambles with higher EVs, this para-
dox calls into question human rationality: The EV of the gam-
ble being infinite, people, therefore, should be willing to place
arbitrarily large bids on this gamble, but this is far from what
experimental evidence suggests.

In spite of its innocent appearance, the St. Petersburg para-
dox occupied the minds of many over the past two centuries,
eliciting a variety of reflections and explanations from sev-
eral notable thinkers, including Daniel and Niklaus Bernoulli,
Cramer, de Morgan, Condorcet, Euler, Poisson, and Gib-
bon, Marschack, Cournot, Arrow, Keynes, Stigler, Samuel-
son, von Mises, Ramsey and Aumann (see Arrow, 1951; Au-
mann, 1977; Dutka, 1988; Keynes, 1921; Samuelson, 1960).
Nonetheless, no widely accepted explanation of this paradox
exists to date.

In this work, we ask whether people’s bids on the St. Pe-
tersburg paradox could be understood as an optimal behav-
ior with the mind acting as a cognitive miser. Answering
this question in the affirmative, we show that the St. Pe-
tersburg paradox can be accounted for by a variant of nor-
mative expected-utility-maximization which acknowledges
computational and cognitive limitations. Specifically, we
demonstrate that Nobandegani, da Silva Castanheira, Otto,
and Shultz’s (2018) metacognitively-rational model, sample-
based expected utility (SbEU), can account for major experi-
mental findings on the St. Petersburg paradox.

In the present study, our efforts are simultaneously guided
by two well-supported observations about human judgment
and decision-making under risk: (1) mounting evidence sug-
gests that people often use very few samples in probabilistic
judgments and reasoning (e.g., Vul et al., 2014; Battaglia et
al. 2013; Lake et al., 2017; Gershman, Horvitz, & Tenen-
baum, 2015; Hertwig & Pleskac, 2010; Griffiths et al., 2012;
Gershman, Vul, & Tenenbaum, 2012; Bonawitz et al., 2014;
Nobandegani et al., 2018; Lieder, Griffiths, Huys, & Good-
man, 2018), and (2) people overestimate the probability of ex-
treme events in their judgments (e.g., Tversky & Kahneman,
1972; Ungemach, Chater, & Stewart, 2009; Burns, Chiu, &
Wu, 2010; Barberis, 2013; Lieder et al., 2018). As we discuss
in the next section, previous explanations of the St. Petersburg
paradox fail to respect at least one of these observations.

Our paper is organized as follows. We begin by present-
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ing a brief historical overview of major explanations of the
St. Petersburg paradox. After providing a brief overview of
SbEU, we turn to modeling four major experimental findings
on the St. Petersburg paradox. We conclude by discussing the
implications of our work for the debate on human rationality.

2 A Brief Historical Overview of the Paradox
In this section, we present a brief overview of major resolu-
tions of the St. Petersburg paradox, followed by notable cri-
tiques of them.

It is worth noting that most of the work on the St. Peters-
burg paradox thus far has been theoretical or philosophical.
Comparatively little effort has been directed at providing em-
pirical data on the bids people would be willing to place on
the gamble and/or how people’s bids would be affected by
changing focal characteristics of the gamble, e.g. by vary-
ing the initial seed or limiting the number of coin flips in
the gamble (e.g., Bottom, Bontempo, and Holtgrave, 1989;
Rivero, Holtgrave, Bontempo, and Bottom, 1990; Kroll and
Vogt, 2009; Cox, Sadiraj, and Vogt, 2011; Hayden & Platt,
2009; Neugebauer, 2010).
Diminishing marginal utility. Initially presented by Daniel
Bernoulli (1738), the diminishing marginal utility explana-
tion of the St. Petersburg paradox argues that, instead of eval-
uating the expected value (EV) of the gamble (which is infi-
nite, see Table 1), people evaluate the expected utility of the
gamble, with the utility function having a concave form (aka
diminishing marginal utility).

As this explanation fails to account for super-St. Peters-
burg paradoxes in which the gamble’s payoff increases super-
exponentially with every coin flip, recent discussions of this
explanation have to make the further assumption that the util-
ity function is bounded from above (e.g., Aumann, 1977;
Martin, 2008; Menger, 1934; Samuelson, 1977; Vickrey,
1960).

The diminishing marginal utility explanation has been dis-
credited several times, mainly because it over-predicts bids
(Lopes, 1981; Martin, 2008; Menger, 1934; Moritz, 1923;
Samuelson, 1960, 1977). (This is not to say that marginal
utility does not diminish, just that this factor is insufficient to
explain the paradox.) Also, the diminishing marginal util-
ity explanation completely neglects the well-supported ob-
servation that people overestimate the probability of extreme
events in their judgment (e.g., Tversky & Kahneman, 1972;
Ungemach, Chater, & Stewart, 2009; Burns, Chiu, & Wu,
2010; Barberis, 2013; Lieder et al., 2018), mistakenly as-
suming that the subjective probability of a low-probability
extreme event in the St. Petersburg gamble (e.g., to win $2100

with probability 1
2101 ) is equal to its objective probability (e.g.,

1
2101 ). Replacing expected utility with more modern variants
which respect the latter observation, e.g. cumulative prospect
theory (CPT), does not help either, as empirically fit val-
ues strongly over-predict bids in the St. Petersburg paradox
(Blavatskyy, 2005; Rieger & Wang, 2006; Camerer, 2005).

Finitude of resources. Another classic explanation is that

since the amount of money in the world is finite, the gambler
must be skeptical about the ability of the house to pay the
large outcomes of the gamble. Relatedly, it has been argued
that time is finite, and the gambler, knowing he or she cannot
continue playing the game forever, bids less than the expected
value of the gamble. This argument has been expressed, in
various forms, by several scholars (see Savage, 1954; Tversky
& Bar-Hillel, 1983; Vickrey, 1960; Dutka, 1988).

Weaknesses of these arguments have been explicated by
several critics. Bertrand argues that, even if the house cannot
afford to pay the money, unites of currency can be reason-
ably replaced by more plentiful stuff, such as grains of sand,
inches, or molecules of hydrogen, and the risk aversion still
remains (Dutka, 1988). By the same logic, the payment may
even be hypothetical or psychological (Martin, 2008; Au-
mann, 1977).

Ignoring low probabilities. This explanation argues that
people consider events whose probability falls below some
threshold to be impossible, i.e. they never happen. For exam-
ple, D’Alembert posited a 1/10,000 threshold, while Niklaus
Bernoulli set the cutoff at a more conservative 1/100,000
(Dutka, 1988).

However, there is a serious flaw with this argument: Ac-
cording to the well-known availability bias (Tversky & Kah-
neman, 1972), people over-represent extreme events, i.e.,
events whose utility is large (Lieder et al., 2018; Nobande-
gani et al., 2018). As low-probability events have (expo-
nentially) larger payoffs in the St. Petersburg gamble, peo-
ple should overestimate those low-probability events, putting
more weights on those low-probability events in their valua-
tion of the gamble.

A key contribution of our work is to provide a resource-
rational process-level explanation of why people are will-
ing to place only a small bid on the gamble despite over-
representing extreme events in their judgment and decision-
making (see Sec. 3). Particularly, past work has shown that
SbEU can account for availability bias (Nobandegani et al.,
2018).

Computing the median instead of the mean. Recently,
Hayde and Platt (2009) proposed that people report the me-
dian (and not the mean) of the distribution associated with the
St. Petersburg gamble as their bid. The median of the distribu-
tion associated with the St. Petersburg gamble is between $1
and $2, and is set by convention at $1.50 (Weissstein, 2008).

The median explanation of Hayde and Platt (2009) is cur-
rently the only model which can simultaneously account for
all the major experimental findings on the St. Petersburg gam-
ble. We investigate all these major experimental findings in
the present study in Sec. 4.

Nevertheless, despite its quantitative coverage, the median
explanation remains too limited to explain the St. Petersburg
paradox, markedly detached from the extensive literature on
human judgment and decision-making. Similar to the dimin-
ishing marginal utility explanation, the median explanation
completely neglects the well-supported observation that peo-
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ple overestimate the probability of extreme events in their
judgment (e.g., Tversky & Kahneman, 1972; Lieder et al.,
2018), mistakenly assuming that the subjective probability of
a low-probability extreme event in the St. Petersburg gamble
is equal to its objective probability.

In this work, we seek to provide a resource-rational process
model of the St. Petersburg paradox that can additionally ac-
count for several well-known effects in decision-making un-
der risk; SbEU meets this criterion (see Sec. 3). As such,
we seek to understand the St. Petersburg gamble as a par-
ticular risky gamble whose process-level explanation should
be consistent with a broader process-level model of decision-
making under risk.

3 Sample-based Expected Utility Model
Extending the cognitively-rational decision-making model of
Lieder, Griffiths, and Hsu (2018) to the realm of metacog-
nition (Cary & Reder, 2002), SbEU is a metacognitively-
rational process model of risky choice that posits that agents
rationally adapt their strategies depending on the amount
of time available for decision-making (Nobandegani et al.,
2018). Concretely, SbEU assumes that an agent estimates ex-
pected utility

E[u(o)] =
∫

p(o)u(o)do, (1)

using self-normalized importance sampling (Hammersley &
Handscomb, 1964; Geweke, 1989), with its importance distri-
bution q∗ aiming to optimally minimize mean-squared error
(MSE):

Ê =
1

∑
s
j=1 w j

s

∑
i=1

wiu(oi), ∀i : oi ∼ q∗, wi =
p(oi)

q∗(oi)
, (2)

q∗(o) ∝ p(o)|u(o)|

√
1+ |u(o)|

√
s

|u(o)|
√

s
. (3)

MSE is a standard normative measure of the quality of an
estimator, and is widely adopted in machine learning and
mathematical statistics (Poor, 2013). In Eqs. (1-3), o denotes
an outcome of a risky gamble, p(o) the objective probabil-
ity of outcome o, u(o) the subjective utility of outcome o, Ê
the importance-sampling estimate of expected utility given in
Eq. (1), q∗ the importance-sampling distribution, oi an out-
come randomly sampled from q∗, and s the number of sam-
ples drawn from q∗.

Recently, Nobandegani et al. (2018) showed that SbEU
can account for availability bias, the tendency to overesti-
mate the probability of events that easily come to mind (Tver-
sky & Kahneman, 1972), and can accurately simulate the
well-known fourfold pattern of risk preferences in outcome
probability (Tversky & Kahneman, 1992) and in outcome
magnitude (Markovitz, 1952; Scholten & Read, 2014). No-
tably, SbEU is the first rational process model to score near-
perfectly in optimality, economical use of limited cognitive
resources, and robustness, all at the same time (Nobandegani
et al., 2018; Nobandegani et al., 2019a).

4 Simulation Results
In this section, we show that SbEU can quantitatively account
for four major experimental findings on the St. Petersburg
paradox: (1) Bids are only weakly affected by truncating the
game (e.g., Cox et al. 2007; Neugebauer, 2010; Hayden &
Platt, 2009), (2) Bids are strongly increased by repeating the
game (Neugebauer, 2010; Hayden & Platt, 2009), (3) Bids
are typically lower than twice the smallest payoff (Hayden &
Platt, 2009), and (4) Bids depend linearly on the initial seed
of the game (Hayden & Platt, 2009).

Recent work has provided mounting evidence suggesting
that people often use very few samples in probabilistic judg-
ments and reasoning (e.g., Vul et al., 2014; Battaglia et al.
2013; Lake et al., 2017; Gershman, Horvitz, & Tenenbaum,
2015; Hertwig & Pleskac, 2010; Griffiths et al., 2012; Ger-
shman, Vul, & Tenenbaum, 2012; Bonawitz et al., 2014;
Nobandegani et al., 2018; Lieder, Griffiths, Huys, & Good-
man, 2018). Consistent with this finding, in the present study
we assume that bidders draw only one sample (s = 1; see
Eqs. 2-3) when evaluating their (subject) expected utility of
the St. Petersburg gamble.

Concretely, we use the Metropolis–Hastings Markov chain
Monte Carlo (MCMC) method—a well-known rational pro-
cess model for sampling from a probability distribution of
interest—to generate a single sample (s = 1) from the impor-
tance distribution q∗ given in Eq. 3. MCMC methods have
been successful in simulating important aspects of a wide
range of cognitive phenomena, e.g., temporal dynamics of
multistable perception (Gershman et al., 2012; Moreno-Bote
et al., 2011), developmental changes in cognition (Bonawitz,
Denison, Griffths, & Gopnik, 2014), category learning (San-
born et al., 2010), and accounting for many cognitive biases
(Nobandegani et al., 2018; Dasgupta et al., 2016).

Also, consistent with prospect theory (Kahneman & Tver-
sky, 1979) and cumulative prospect theory (Kahneman &
Tversky, 1992), in this paper we assume a standard S-shaped
utility function u(x) given by:

u(x) =
{

x0.35 if x≥ 0,
−|x|0.45 if x < 0.

(4)

4.1 Bids are weakly affected by truncating the
game

In the original St. Petersburg gamble, there is no a priori
upper-bound on number of coin flips; theoretically it can con-
tinue indefinitely. In a truncated variant of the St. Petersburg
gamble, some a priori upper-bound is placed on the number
of coin flips. Several experimental studies have shown that
bids that people are willing to offer to play the St. Petersburg
gamble are only weakly affected by truncating the game (Cox
et eal., 2007; Cox et al., 2008, 2009; Hayden & Platt, 2009).
This finding is generally taken as evidence for people ignor-
ing small-probability events in the game (Neugebauer, 2010).

Recently, Hayden and Platt (2009) investigated bids for the
St. Petersburg gamble truncated at 3 flips (maximum payoff:
$8, EV: $2.50), 5 flips (maximum payoff: $32, EV: $3.50),
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Figure 1: Hayden and Platt’s (2009) experimental data on
the effect of truncation on bids for the St. Petersburg gamble.
Adapted from Hayden and Platt (2009).
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Figure 2: SbEU (Nobandegani et al., 2018) can accurately
simulate the experimental data of Hayden and Platt (2009) on
the effect of truncation on bids for the St. Petersburg gamble.
Error bars indicate ± 1 SEM.

8 flips (maximum payoff: $256, EV: $5), 10 flips (maxi-
mum payoff: $1024, EV: $6) and 15 flips (maximum payoff:
$32,768, EV: $8.50); their experimental data are shown in
Fig. 1.

Fig. 2 shows that SbEU can account for the experimental
data of Hayden and Platt (2009). In Fig. 2, we simulate N =
1000 participants, with s = 1.

4.2 Bids rise with repetitions of the game
Recently, Hayden and Platt (2009) experimentally showed
that bids to play the (un-truncated) St. Petersburg gamble are
strongly affected by repeating the game, with people willing

to place higher bids with a larger number of game repetitions.
Fig. 3 shows that SbEU can qualitatively simulate people’s

tendency to place higher bids for a larger number of game
repetitions, as experimentally shown by Hayden and Platt
(2009). In Fig. 3, we simulate N = 1000 participants, with
s = 1.
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Figure 3: SbEU (Nobandegani et al., 2018) can account for
the experimental finding of Hayden and Platt (2009) showing
that people willing to place higher bids for a larger number
of game repetitions (Pearson’s r = .9998, Kendall’s τ = 1,
Spearman’s ρ = 1, Ps < .001).

4.3 Bids are typically lower than twice the smallest
payoff

In their recent work, Hayden and Platt (2009) showed that
bids to play the (un-truncated) St. Petersburg gamble are typ-
ically lower than twice the smallest payoff of the game.

Fig. 4 shows that SbEU can account for this experimental
finding of Hayden and Platt (2009). In Fig. 4, we simulate
N = 1000 participants, with s = 1.

4.4 Bids depend linearly on the initial seed
Interestingly, Hayden and Platt (2009) showed that bids to
play the (un-truncated) St. Petersburg gamble depend linearly
on the initial seed of the game, thus providing a quantita-
tively well-characterized criterion for evaluating a computa-
tional account.

Fig. 5 shows that SbEU can accurately account for this
experimental finding of Hayden and Platt (2009) (Pearson’s
r = .9758, Kendall’s τ = 0.9556, Spearman’s ρ = .9879,
Ps < .001). In Fig. 5, we simulate N = 1000 participants,
with s = 1.

5 General Discussion
The St. Petersburg paradox (Bernoulli, 1738) stands among
the oldest philosophical puzzles of human decision-making,
and has played a pivotal role in the emergence of the concept
of the subjective utility curve, a central concept in economics
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Figure 4: Boxplots of the model’s bids. SbEU can ac-
count for the experimental finding of Hayden and Platt (2009)
showing that people’s bids are typically lower than twice the
smallest payoff (i.e. initial seed) in the St. Petersburg gam-
ble. On each box, the central red mark indicates the me-
dian, and the bottom and top edges of the box indicate the
25th (denoted by q1) and 75th (denoted by q3) percentiles
of the data, respectively. On each box, the whisker ex-
tends to the most extreme data points not considered out-
liers. Outliers are data points that lie outside the interval
[q1−1.5×(q3−q1),q3+1.5×(q3−q1)]), and are not shown
in this plot. The boldfaced black solid line depicts y = 2x.
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Figure 5: SbEU (Nobandegani et al., 2018) can account for
the experimental finding of Hayden and Platt (2009) show-
ing that bids depend linearly on the initial seed of the St. Pe-
tersburg gamble (Pearson’s r = .9758, Kendall’s τ = 0.9556,
Spearman’s ρ = .9879, Ps < .001).

(Dutka, 1988). Despite occupying the minds of many impor-
tant thinkers, eliciting many attempts and several proposals,
no generally-accepted resolution is yet at hand.

In this work, we provide an algorithmic-level account
of major experimental findings on the St. Petersburg para-

dox. Specifically, we show that a single parameterization of
Nobandegani et al.’s (2018) metacognitively-rational model,
SbEU, provides a unified, resource-rational, process-level ex-
planation of (1) why bids are only weakly affected by truncat-
ing the game, (2) why people are willing to place higher bids
for a larger number of game repetitions, (3) why bids are typ-
ically lower that twice the smallest payoff of the game (aka
initial seed), and (4) why bids depend linearly on the initial
seed of the game. As such, Items (1-4) can be understood as
optimal behavior subject to cognitive limitations.

As opposed to the competing median explanation of Hay-
den and Platt (2009) that is too specific to the St. Petersburg
paradox, our work provides a resource-rational process model
of the St. Petersburg paradox that can additionally account
for several well-known effects in decision-making under risk
(Nobandegani et al., 2018), and is fully in line with the much
broader process-level understanding of human probabilistic
judgment and reasoning based on sampling (e.g., Stewart,
Chater, & Brown, 2006; Sanborn & Chater, 2016).

Recent work has shown that SbEU provides a resource-
rational mechanistic account of (ostensibly irrational) coop-
eration in one-shot Prisoner’s Dilemma games, thus success-
fully bridging between game-theoretic decision-making and
risky decision-making (Nobandegani, da Silva Castanheira,
Shultz, & Otto, 2019b). There is also experimental confir-
mation of a counterintuitive prediction of SbEU: Delibera-
tion leads people to move from one well-known bias, fram-
ing effect, to another well-known bias, the fourfold pattern of
risk preferences (da Silva Castanheira; Nobandegani, & Otto,
2019).

Crucially, our explanation retains the well-supported as-
sumption that people overestimate the probability of extreme
events in their judgment and decision-making (Tversky &
Kahneman, 1972; Lieder et al., 2018; Nobandegani et al.,
2018), and is fully in line with mounting evidence suggesting
that people use only a few samples in probabilistic judgments
and reasoning (e.g., Vul et al., 2014; Battaglia et al. 2013;
Lake et al., 2017; Gershman, Horvitz, & Tenenbaum, 2015;
Hertwig & Pleskac, 2010; Griffiths et al., 2012; Gershman,
Vul, & Tenenbaum, 2012; Bonawitz et al., 2014; Nobande-
gani et al., 2018; Lieder, Griffiths, Huys, & Goodman, 2018).

Recently, Blavatskyy (2005) showed that conventional pa-
rameterizations of cumulative prospect theory (CPT; Kahne-
man & Tversky, 1992) do not explain the St. Petersburg para-
dox. As we demonstrate in this work, assuming a standard
S-shaped utility function, as advocated by CPT, suffices for
explaining the St. Petersburg paradox with SbEU (see Eq. 4).

There have been several recent studies (see Lieder & Grif-
fiths, 2018, for a review) attempting to show that many well-
known (purportedly irrational) behavioral effects and cogni-
tive biases can be understood as optimal behavior subject to
computational and cognitive limitations (rational minimalist
program, Nobandegani, 2017; Griffiths, Lieder, & Goodman,
2015). The present study contributes to this line of work
by providing a resource-rational process-level account of a
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centuries-old puzzle concerning human decision-making.
Future work should investigate whether other long-

standing paradoxes of human judgment and decision-making,
e.g., the Ellsburg paradox (Ellsberg, 1961), could be also un-
derstood as optimal behavior subject to cognitive limitations.
We see our work as a step in this direction.
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